Applications of Analytical Ultracentrifugation in Structure-Based Drug Design

  • Thomas F. Holzman
  • Seth W. Snyder
Part of the Emerging Biochemical and Biophysical Techniques book series (EBBT)


As a technique analytical ultracentrifugation encompasses a family of related hydrodynamic methods which are employed to monitor either transport (sedimentation velocity) or equilibrium (sedimentation equilibrium) processes. Recent development of the Beckman Optima XLA analytical ultracentrifuge, to eventually replace the Model E, makes it possible to routinely apply these methods to biophysical problems associated with the development of effective, targeted, pharmacophores. In order to evaluate the contributions that ultracentrifugation can make to the process of structure-based drug design it is essential to first define the drug design cycle (Fig. 1). The characterizations of structure and function provided by Protein Biochemistry in this process precede and fuel all subsequent three-dimensional structure determinations. The role of computationally-based and structure-based 3D information in the design cycle has recently been elaborated (Propst and Perun, 1989, and references cited therein). Typically, the cycle begins with the identification of a tissue source of the “activity” of interest: i.e. the protein or the DNA encoding the protein of interest. Whether the desired protein is from a natural or recombinant source it is first purified and characterized. Some recent examples from our laboratories include the purification and characterization of two classes of natural and recombinant, highly-expressed, peptidyl-prolyl isomerases, cyclophilin (Holzman et al., 1991, and references cited therein) and FKBP (Edalji et al., 1992).


Molecular Weight Distribution Drug Design Radial Position Sedimentation Velocity Fractional Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chartier-Harlin, MC., Crawford, F., Houlden, H., Warren, A., Hughes, D., Fidani, L., Goate, A. M., Rossor, M., Roques, P., Hardy, J., and Mullan, M. (1991) Nature 353, 844–846.PubMedCrossRefGoogle Scholar
  2. Crepeau, R.H., Hensley, C.P., and Edelstein, S.J. (1974) Biochemistry 13, 4860–4865.PubMedCrossRefGoogle Scholar
  3. Edalji, R.P., Pilot-Matias, T., Pratt, S.D., Egan, D.A., Severin, J., Gubbins, E.J., Petros, A., Fesik, S.W., Burres, N.J., and Holzman, T.F., (1992) J. Prot. Chem. 11, 213–223.CrossRefGoogle Scholar
  4. Edelstein, S.J., Rehmar, M.J., Olson, and J.S., Gibson, Q.H. (1970) J. Biol. Chem. 245, 4372–4381.PubMedGoogle Scholar
  5. Egan, D.A., Logan, T.M., Liang, H., Matyoshi, E., Fesik, S.W., and Holzman, T.F. (1993) Biochemistry 32, 1920–1927.PubMedCrossRefGoogle Scholar
  6. Evans, D. A., Funkenstein, H. H., Albert, M. S., Scherr, P. A, Cook, N. R., Chown, M. J., Hebert, L. E., Hennekens, C. H., and Taylor, J. O. (1989) J. Amer. Med. Assoc. 262, 2551–2556.CrossRefGoogle Scholar
  7. Fesik, S., Gampe, R., Holzman, T.F., Egan, D.A., Edalji, R., Luly, J.R., Simmer, R., Helfrich, R., Kishore, V., and Rich, D. (1990) Science 250, 1406–1409.PubMedCrossRefGoogle Scholar
  8. Fesik, S.W., Gampe, R.T., Eaton, H.L., Gemmecker, G., Olejniczak, E.T., Neri, P., Holzman, T.F., Edalji, R., Simmer, R., Helfrich, R., Hochlowski, J., and Jackson, M. (1991) Biochemistry 30, 6574–6583.PubMedCrossRefGoogle Scholar
  9. Fujita,H. (1962) in “Mathematical Theory of Sedimentation Analysis” Academic Press, NY., pp 64–122.Google Scholar
  10. Glenner, G. G. and Wong, C. W. (1984) Biochem. Biophys. Res. Commun. 120, 885–890.PubMedCrossRefGoogle Scholar
  11. Goldberg, R.J. (1953) J. Chem. Phys. 57, 194–202.CrossRefGoogle Scholar
  12. Goldman, R.C., Boiling, T.J., Kohlbrenner, W.E., Kim, Y., and Fox, J.L. (1986) J. Biol Chem. 261, 15831–15835.PubMedGoogle Scholar
  13. Goldgaber, D., Lerman, M. I., McBride, W. O., Saffiotti, U., and Gajdusek, C. D. (1987) Science 235, 877–880.PubMedCrossRefGoogle Scholar
  14. Giebeler, R. (1992) in Analytical Ultracentrifugation in Biochemistry and Polymer Science, (S.E. Harding, A.J. Rowe, J.C. Horton, Eds.) Roy. Soc. Chem., London, pp 16–25.Google Scholar
  15. Giordano, T., Pan, J.B., Monteggia, L.M., Holzman, T.F., Snyder, S.W., Krafft, G. Ghanbari, H., and Kowal, N. W. (1994) Exptl. Neurol. 125, in press.Google Scholar
  16. Holzman, T.F., Leytus, S.P., Baldwin, T.O., Mangel, W.F. (1982) Anal. Bioch. 119, 62–72.CrossRefGoogle Scholar
  17. Holzman, T.F., Egan, D.A., Chung, C.C., Rittenhouse, J., and Turon, M. (1990) Biophys. J. 57, 378.Google Scholar
  18. Holzman, T.F., Fesik, S.W., Park, C., and Kofron, J.A. (1991) in Applications of Enzyme Biotechnology (Kelly, J.A. and Baldwin, T.O., Eds.) Plenum, pp. 109–128.Google Scholar
  19. Holzman, T.F., Egan, D.A., and Edalji, R. (1992a) Biophys. J. 61, 171.Google Scholar
  20. Holzman, T.F., Gampe, R.T., and Fesik, S.W. (1992b) Biophys. J. 61, 475.Google Scholar
  21. Holzman, T.F., Gampe, R.T., and Fesik, S.W. (1992c) Biophys. J. 61, 478.Google Scholar
  22. Holzman, T.F., Kohlbrenner, W.E., Weigl, D., Rittenhouse, J., and Erickson, J. (1991) J. Biol. Chem. 266, 19217–19220.PubMedGoogle Scholar
  23. Kang, J., Lemaire, H-G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G, Beyreuther, K., and Muller-Hill, B. (1987) Nature 325, 733–736.PubMedCrossRefGoogle Scholar
  24. Kowall, N. W., Beal, F. M., Busciglio, J., Duffy, L. K., and Yanker, B. A. (1991) Proc. Natl Acad. Sci. U. S. A. 88, 7247–7251.PubMedCrossRefGoogle Scholar
  25. Meadows, R.P., Nettesheim, D.G., Xu, R.X., Olejniczak, E.T., Petros, A.M., Holzman, T.F., Severin, J., Gubbins, E.G., Smith, H., and Fesik, S.W. (1993) Biochemistry 32, 754–765.PubMedCrossRefGoogle Scholar
  26. Neri, P., Meadows, R., Gemmecker, G., Olejniczak, E., Nettesheim, Logan, T., Simmer, R., Helfrich, R., Holzman, T., Severin, J., and Fesik, S. (1991) FEBS Lett. 294, 81–88.PubMedCrossRefGoogle Scholar
  27. Petros, A.M., Gampe, R.T., Gemmecker, G., Neri, P., Holzman, T.F., Edalji, R.P., Hochlowski, J., Jackson, M., Luly, J.R., Pilot-Matias, T., Prattt, S., and Fesik, S.W. (1991) J. Med. Chem. 34, 2925–2928.PubMedCrossRefGoogle Scholar
  28. Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W. (1993) Neuroscience 13, 1676–1687.PubMedGoogle Scholar
  29. Propst, C.L., and Perun, T.J. (1989) in Computer-Aided Drug Design: Methods and Applications, (C.L. Propst and T.J Perun, Eds.) Marcel Dekker, New York, pp. 1–16.Google Scholar
  30. Snyder, S.W., Ladror, U.S., Wang, G.T., Krafiìt, G.A., and Holzman, T.F. (1993a) Biophys. J. 64, 378.Google Scholar
  31. Snyder, S.W., Ladror, U.S., Wang, G.T., Krafft, G.A., and Holzman, T.F. (1993b) Biophys. J. 64, 378.Google Scholar
  32. Thériault, Y., Logan, T.M., Meadows, R., Yu, L., Olejniczak, E.T., Holzman, T.F., Simmer, R.L., and Fesik, S.W. (1993) Nature 361, 88–91.PubMedCrossRefGoogle Scholar
  33. Unger, F.M. (1981) Adv. Carb. Chem. Biochem. 38, 323–388.CrossRefGoogle Scholar
  34. Yanker, B. A., Duffy, L. K., and Kirschner, D. A. (1990) Science 250, 279–282.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • Thomas F. Holzman
    • 1
  • Seth W. Snyder
    • 1
  1. 1.Drug Design & DeliveryAbbott LaboratoriesAbbott ParkUSA

Personalised recommendations