Analytical Ultracentrifugation and its use in Biotechnology

  • Steven J. Shire
Part of the Emerging Biochemical and Biophysical Techniques book series (EBBT)


Analytical ultracentrifugation has played a critical role in laying the foundations for modern molecular biology. Among its achievements are the demonstration that proteins are macromolecules rather than complexes of smaller units (Svedberg and Fahraeus 1926), and direct support for the semi-conservative replication of DNA as proposed by Watson and Crick (Meselson and Stahl 1958). Unlike techniques such as SDS polyacrylamide gel electrophoresis (SDS PAGE) or gel permeation chromatography (GPC), analytical ultracentrifugation can be used to determine absolute molecular weights without the use of molecular weight standards or interference from the sieving matrix used for separation. Mass spectrometry technology has improved tremendously over the last 5 years and routinely enables researchers to determine molecular weights of macromolecules far more accurately than by analytical ultracentrifugation. However, molecular weights of associating macromolecules in solution are still best determined by centrifugation. Quantitation of these interactions by determining association constants is most easily done by sedimenting solutions to equilibrium and fitting the resulting concentration gradient to a specific association model. The interactions between molecules in oligomeric proteins, self-associating proteins, and interacting systems such as receptor-ligand complexes can be investigated by analytical ultracentrifugation.


Mixed Micelle Sedimentation Equilibrium Partial Specific Volume Human Relaxin Absolute Molecular Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, T. and D. A. Yphantis. (1987): Molecular weight of recombinant human tumor necrosis factor-a. J. Biol. Chem. 262: 7484–7485.PubMedGoogle Scholar
  2. Bach, R. R. (1988): Initiation of coagulation by tissue factor. CRC Critical Reviews in Biochemistry. 23: 339–368.PubMedCrossRefGoogle Scholar
  3. Blundell, T. L., J. F. Cutfield, S. M. Cutfield, E. Dodson, D. C. Hodgkin, D. A. Mercola and M. Vijayan. (1971): Nature (London). 231: 506–511.CrossRefGoogle Scholar
  4. Blundell, T. L., G. Dodson, D. Hodgkin and D. A. Mercola. (1972): Insulin: The structure in the crystal and Its reflection in chemistry and biology. Adv. Protein Chem. 26: 279–402.CrossRefGoogle Scholar
  5. Bryant-Greenwood, G. D. (1982): Relaxin as a new hormone. Endocrine Rev. 3 (1): 62 - 90.CrossRefGoogle Scholar
  6. Charlwood, P. A. (1957): Partial specific volume of proteins in relation to composition and environment. J. Am. Chem. Soc. 79: 776–781.CrossRefGoogle Scholar
  7. Cipolla, D. and S. J. Shire. (1992): Characterization of human tissue factor-surfactant mixed micelles. The Protein Society. San Diego: 80, abstract number S198.Google Scholar
  8. Cohn, E. J. and J. T. Edsall. (1965): Proteins, amino Acids and peptides as ions and dipolar ions. New York, Hafner.Google Scholar
  9. Correia, J. J. and D. A. Yphantis. (1992): Equilibrium sedimentation in short solution columns. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, eds. Cambridge: The Royal Society of Chemistry.Google Scholar
  10. Cunningham, B. C., M. Ultsch, A. M. De Vos, M. G. Mulkerrin, K. R. Cluser and J. A. Wells. (1991): Dimerization of the extracellular domain of the human growth hormone receptor by a single growth hormone molecule. Science. 254: 821–825.PubMedCrossRefGoogle Scholar
  11. Edelstein, S. J. and H. K. Schachman. (1967): The simultaneous determination of partial specific volumes and molecular weights with microgram quantities. J. Biol. Chem. 242 (306–311)Google Scholar
  12. Eigenbrot, C., M. Randal, C. Quan, J. Burnier, L. O’Connell, E. Rinderknecht and A. A. Kossiakoff. (1991): X-Ray structure of human relaxin at 1.5 A. J. Mol. Biol. 221: 15–21.Google Scholar
  13. Engelmann, H., H. Holtmann, C. Brakebusch, Y. S. Avni, I. Sarov, D. Nophar, E. Hadas, O. Leitner and D. Wallach. (1990): Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have a TNF- like activity. J. Biol. Chem. 265: 14497–14504.PubMedGoogle Scholar
  14. Espevik, T., M. Brockhaus, H. Loetscher, U. Nonstad and R. Shalaby. (1990): Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J. Exptl. Med. 171: 415–426.CrossRefGoogle Scholar
  15. Evans, M. I., M.-B. Dougan, A. H. Moawad, W. J. Evans, G. D. Bryant- Greenwood and F. C. Greenwood. (1983): Ripening of the human cervix with porcine ovarian relaxin. Am. J. Obstet. Gynecol. 147 (4): 410–414.PubMedGoogle Scholar
  16. Ferraiolo, B. L., M. Cronin, C. Bakhit, M. Roth, M. Chestnut and R. Lyon. (1989): The pharmacokinetics and pharmacodynamics of a human relaxin in the mouse pubic symphysis bioassay. Endocrinology. 125 (6): 2922–2926.PubMedCrossRefGoogle Scholar
  17. Gibbons, R. A. (1972): Physico-chemical methods for the determination of the purity, molecular size and shape of glycoproteins. In: Glycoproteins, Part A, A. Gottschalk, eds. Amsterdam: Elsevier.Google Scholar
  18. Giebler, R. (1992): The Optima XL-A: A new analytical ultracentrifuge with a novel precision absorption optical system. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, eds. Cambridge: The Royal Society of Chemistry.Google Scholar
  19. Goldman, J. and F. H. Carpenter. (1974): Zinc binding, circular dichroism, and equilibrium sedimentation studies of insulin (bovine) and several of its derivatives. Biochemistry 13: 4566–4574.PubMedCrossRefGoogle Scholar
  20. Heller, R. A., K. Song, D. Villaret, R. Margolskee, J. Dunne, H. Hayakawa and G. M. Ringold. (1990): Amplified expression of tumor necrosis factor receptor in cells transfected with Epstein-Barr virus shuttle vector cDNA libraries. J. Biol. Chem. 265: 5708–5717.PubMedGoogle Scholar
  21. Hodgkin, D. C. and D. A. Mercola. (1972): In: Handbook of Physiology I, D. Steiner, eds. Washington, D. C.: American Physiological Society.Google Scholar
  22. Jeffrey, P. D. and J. H. Coates. (1966): An equilibrium ultracentrifuge study of the effect of ionic strength on the self-association of bovine insulin. Biochemistry 5: 3820–3824.CrossRefGoogle Scholar
  23. Kameyama, K. and T. Takagi. (1990): Micellar properties of octylglucoside in aqueous solutions. J. Colloid Interface Sci. 137: 1–10.CrossRefGoogle Scholar
  24. Kawashima, N. Fujimoto, N., and Meguro, K. (1985): Determination of critical micelle concentration of several nonionic surfactants by azo-hydrazone tautomerism of anionic dye. J. Coll. Int. Sci. 103: 459.CrossRefGoogle Scholar
  25. Koschinsky, M. L., J. E. Tomlinson, T. F. Zioncheck, K. Schwartz, D. L. Eaton and R. M. Lawn. (1991): Apolipoprotein(a): Expression and characterization of a recombinant form of the protein in mammalian cells. Biochemistry. 30: 5044–5051.PubMedCrossRefGoogle Scholar
  26. Kratky, O., H. Leopold and H. Stabinger. (1973): The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods in Enzymology. New York, Academic Press.Google Scholar
  27. Lackner, C., E. Boerwinkle, C. C. Leffert, T. Rahmig and H. H. Hobbs. (1991): Molecular basis of apolipoprotein(a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J. Clin. Invest. 87: 2153–2161.PubMedCrossRefGoogle Scholar
  28. Laue, T. M. (1992): On-line data acquisition and analysis from the Rayleigh interferometer. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, eds. Cambridge: The Royal Society of Chemistry.Google Scholar
  29. Leonard, C. K., M. Spellman, L. Riddle, R. J. Harris, J. N. Thomas and T. J. Gregory. (1990): Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type I recombinant human immunodeficiency virus envelope glycoprotein (gpl20) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265: 10373–10382.PubMedGoogle Scholar
  30. MacLennan, A., R. C. Green, G. D. Bryant-Greenwood, F. C. Greenwood and R. F. Seamark. (1981): Cervical ripening with combinations of vaginal prostaglandin F2a, estradiol and relaxin. Obstet Gynecol. 58 (5): 601–604.PubMedGoogle Scholar
  31. MacLennan, A. H., R. C. Green, P. Grant and R. Nicolson. (1986): Ripening of the human cervix and induction of labor with intracervical purified porcine relaxin. Obstet. Gynec. 68 (5): 598–601.PubMedGoogle Scholar
  32. Marque, J. (1992): Personal communication.Google Scholar
  33. McMeekin, T. L. and K. Marshall. (1952): Specific volumes of proteins and their relationship to their amino acid contents. Science. 116: 142–143.PubMedCrossRefGoogle Scholar
  34. Meselson, M. and F. W. Stahl. (1958): Proc. Natl. Acad. Sci. 44: 671.PubMedCrossRefGoogle Scholar
  35. Moore, W. V. and P. Leppert. (1980): Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrin. Metabol. 51: 691.CrossRefGoogle Scholar
  36. Narhi, O., L. and T. Arakawa. (1987): Dissociation of recombinant tumor necrosis factor-a studied by gel permeation chromatography. Biochem. Biophysical Res. Comm. 147: 740–746.CrossRefGoogle Scholar
  37. Nemerson, Y. (1988): Tissue factor and hemostasis. Blood. 71: 1–8.PubMedGoogle Scholar
  38. Paborsky, L. R., Tate, K. M., Harris, R. J., Yansura, D. G., Band, L., McCray, G., Gorman, C. M., O’Brien, D. P., Chang, J. Y., Swartz, J. R., Fung, V.P., Thomas, J. N. and Yehar, G. A. (1989): Purification of recombinant human tissue factor. Biochemistry 28: 8072–8077.PubMedCrossRefGoogle Scholar
  39. Pennica, D., W. J. Kohr, B. M. Fendly, S. J. Shire, H. E. Raab, P. E. Borchardt, M. Lewis and D. V. Goeddel. (1992): Characterization of a recombinant extracellular domain of the type I tumor necrosis factor receptor: evidence for tumor necrosis factor-a induced receptor aggregation. Biochemistry 31: 1134–1141.PubMedCrossRefGoogle Scholar
  40. Peterson, C. M., A. Nykjaer, B. S. Christiansen, L. Heickendorff, S. C. Mogensen and B. Moller. (1989): Bioactive human recombinant tumor necrosis factor a: An unstable dimer? Eur. J. Immunol. 19: 1887–1894.CrossRefGoogle Scholar
  41. Phillips, M., A. V. Lembertas, V. N. Schumaker, R. M. Lawn, S. J. Shire and T. F. Zioncheck. (1993): Physical properties of recombinant apolipoprotein (a) and its association with LDL to form an Lp(a)-like complex. Biochemistry. 32: 3722–3728.PubMedCrossRefGoogle Scholar
  42. Pinkard, R. N., D. M. Weir and W. H. McBride. (1967): Factors influencing immune response: I. Effects of the physical state of the antigen and use of lymphoreticular cell proliferation on the response to intravenous injection of bovine serum albumin in rabbits. Clin. Exp. Immunol. 2: 331.Google Scholar
  43. Rosevear, P., T. VanAken, J. Baxter and S. Ferguson-Miller. (1980): Alkyl glucoside detergents: A simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry. 19: 4108–4115.PubMedCrossRefGoogle Scholar
  44. Schwabe, C. and S. J. Harmon. (1978): A comparative circular dichroism study of relaxin and insulin. BBRC. 84 (2): 374–380.PubMedGoogle Scholar
  45. Shao, Z., Y. Li, R. Krishnamoorthy, T. Chermak and A. K. Mitra. (1993): Differential effects of anionic, cationic, nonionic, and physiologic surfactants on the dissociation, alpha-chymotryptic degradation and internal absorption of insulin hexamers. Phar. Res. 10: 243.CrossRefGoogle Scholar
  46. Sherwood, C. D. and E. M. O’Byrne. (1974): Purification and characterization of porcine relaxin. Arch Biochem Biophys. 160: 185–196.PubMedCrossRefGoogle Scholar
  47. Sherwood, O. D. (1988): Relaxin. In: The Physiology of Reproduction, E. Knobil and J. Neill, eds. New York: Raven Press.Google Scholar
  48. Shire, S. J., L. A. Holladay and E. Rinderknecht. (1991): Self- Association of human and porcine relaxin as assessed by analytical ultracentrifugation and circular dichroism. Biochemistry. 30: 7703–7711.PubMedCrossRefGoogle Scholar
  49. Smith, R. A. and C. Baglioni. (1987): The active form of tumor necrosis factor is a trimer. J. Biol. Chem. 262: 6951–6954.PubMedGoogle Scholar
  50. Steinetz, B. G., V. L. Beach and R. L. Kroc. (1959): The physiology of relaxin in laboratory animals. In: Recent Progress in the Endricrinology of Reproduction, C. W. LLoyd, eds. New York: Academic Press.Google Scholar
  51. Svedberg, T. and R. Fahraeus. (1926): A new method for the determination of the molecular weight of the proteins. J. Am. Chem. Soc. 48: 430.CrossRefGoogle Scholar
  52. Takagi, T. (1990): Application of low-angle laser light scattering detection in the field of biochemistry. J. Chrom. 506: 409–416.CrossRefGoogle Scholar
  53. Tanford, C., Y. Nozaki, J. A. Reynolds and S. Makino. (1974): Molecular characterization of proteins in detergent solutions. Biochemistry. 13: 2369–2376.PubMedCrossRefGoogle Scholar
  54. Tanford, C., Y. Nozaki and M. F. Rohde. (1977): Size and shape of globular micelles formed in aqueous solution by n-alkyl polyoxyethylene ethers. J. Phys. Chem. 81: 1555–1560.CrossRefGoogle Scholar
  55. Tartaglia, L. A., R. F. Weber, I. S. Figari, C. Reynolds, M. A. Pallidino and D. V. Goeddel. (1991): Proc. Natl. Acad. Sci. U. S. A. 88: 9292–9296.PubMedCrossRefGoogle Scholar
  56. Teller, D. C. (1972): Characterization of proteins by sedimentation equilibrium in the analytical ultracentrifuge. Meth. Enzym. 27: 346–441.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • Steven J. Shire

There are no affiliations available

Personalised recommendations