Advertisement

On Line Data Acquisition for the Rayleigh Interference Optical System of the Analytical Ultracentrifuge

  • David A. Yphantis
  • Jeffrey W. Lary
  • Walter F. Stafford
  • Sen Liu
  • Philip H. Olsen
  • David B. Hayes
  • Thomas P. Moody
  • Theresa M. Ridgeway
  • Daryl A. Lyons
  • Thomas M. Laue
Part of the Emerging Biochemical and Biophysical Techniques book series (EBBT)

Abstract

The fundamental measurement in analytical ultracentrifugation is the concentration as a function of radial position. The Rayleigh interferometer of the analytical ultracentrifuge produces a cell image in which the concentration at each radial position is presented as the vertical displacement of a set of equally-spaced horizontal fringes (Richards and Schachman, 1959). Manual acquisition of data from interferograms is tedious and automated photographic plate readers still require that photographs be taken, processed, aligned and read before data analysis can be performed. Fortunately, a Rayleigh interference image is well suited for television- camera-based data acquisition. Described here are two types of automated Rayleigh interferometers for the Beckman Model E analytical ultracentrifuge. One type of system relays and magnifies the Rayleigh interference image from the usual photographic plane to a television camera located behind this plane. The other system uses a redesigned camera- cylinder lens combination to create a radially demagnified Rayleigh interference image of the cell on the television camera sensor located on the original cylinder lens mount.

Keywords

Radial Position Magnification Factor Camera Lens Radial Increment Optical Track 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeRosier DJ, Münk P and Cox DJ (1971): Automatic Measurement of Interefernce Photographs for the Ultracentrifuge. Anal. Biochemistry 50: 139.CrossRefGoogle Scholar
  2. Laue TM (1981): Rapid Precision Interferometry for the Analytical Ultracentrifuge. Ph.D. Dissertation, U. of Connecticut, Storrs, CT.Google Scholar
  3. Laue, T.M. (1992) On-line Data Acquisition and Analysis from the Rayleigh Interferometer. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S.E. Harding and A.J. Rowe, eds. Royal Society of Chemistry, Cambridge, U.K.Google Scholar
  4. Laue, TM (1993) Real-time Interferometry in the Ultracentrifuge. In: SPIE Proceedings, Vol. 1895, Ultrasensitive Laboratory Diagnostics, Cohn, J. ed., Bellingham, WA: SPIE.Google Scholar
  5. Liu S and Stafford WF (1992): A Real-Time Video-Based Optical System for an Analytical Ultracentrifuge Allowing Imaging of the Entire Centrifuge Cell. Biophys J 61, A476, #2745.Google Scholar
  6. Paul, CH and Yphantis, DA (1972): Pulsed Laser Interferometry in the Ultracentrifuge. I. System Design. Analytical Biochem. 48: 588.CrossRefGoogle Scholar
  7. Perlman GE and Longsworth LG (1948): The Specific Refractive Increment of Some Purified Proteins. J. Am. Chem. Soc. 70: 2719.CrossRefGoogle Scholar
  8. Richards EG and Schachman HK (1959): Ultracentrifuge Studies with Rayleigh Interference Optics I. General Applications. J. Phys. Chem. 63: 1578.CrossRefGoogle Scholar
  9. Richards EG, Teller DC and Schachman HK (1971): Alignment of Schlieren and Rayleigh Optical Systems in the Analytical Ultracentrifuge I. Focusing the Camera and Cylinder Lenses. Anal. Biochem. 41: 180.Google Scholar
  10. Richards JH and Richards EG (1974): Light Difference Detector for Reading Rayleigh Fringe Patterns from the Analytical Ultracentrifuge. Anal. Biochemistry 62: 523.CrossRefGoogle Scholar
  11. Stafford WF (1992): Boundary Analysis in Sedimentation Transport Experiments: A Procedure for Obtaining Sedimentation Coefficient Distributions Using the Time Derivative of the Concentration Profile. Anal Biochem 203: 295–301.PubMedCrossRefGoogle Scholar
  12. Williams RC Jr. (1972): A Laser Light Source for the Analytical Ultracentrifuge. Anal. Biochem. 48: 164.CrossRefGoogle Scholar
  13. Yphantis DA (1964): Equilibrium Ultracentrifugation of Dilute Solutions. Biochemistry, 3: 297.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • David A. Yphantis
  • Jeffrey W. Lary
  • Walter F. Stafford
  • Sen Liu
  • Philip H. Olsen
  • David B. Hayes
  • Thomas P. Moody
  • Theresa M. Ridgeway
  • Daryl A. Lyons
  • Thomas M. Laue

There are no affiliations available

Personalised recommendations