Refining Hydrodynamic Shapes of Proteins: The Combination of Data From Analytical Ultracentrifugation and Time-Resolved Fluorescence Anisotropy Decay

  • Evan Waxman
  • William R. Laws
  • Thomas M. Laue
  • J. B. Alexander Ross
Part of the Emerging Biochemical and Biophysical Techniques book series (EBBT)


Classical physical biochemical techniques are currently experiencing a renaissance as the result of several technological advances made over the past decade. One major reason for this renaissance is the need to understand the structures and functional characteristics of wild-type and mutant proteins that are now readily available through recombinant-DNA methods. Mutations of interest include alterations at specific functional sites, truncations, and switched domains. Another major reason for this renaissance is the availability of cheap, accessible computing power to facilitate data reduction. It is now possible and appropriate to combine the data from different physical techniques to obtain information which would not be obtainable from any single technique alone. This chapter examines a way in which the combination of analytical ultracentrifugation and time-resolved fluorescence anisotropy data permits knowledge of the hydrodynamic shape of a protein to be refined.


Fluorescence Anisotropy Rotational Correlation Time Analytical Ultracentrifugation Hydrated Sphere Partial Specific Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach, R. (1988) CRC Crit. Rev. Biochem. 23, 339–368.PubMedCrossRefGoogle Scholar
  2. Beiford, G. G., Beiford, R. L., & Weber, G. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 1392–1393.CrossRefGoogle Scholar
  3. Cohn, E. J., & Edsall, J. T. (1943) Proteins, Amino Acids and Peptides as Ions and Dipolar Ions, p. 157, Rheinhold, New York, NY.Google Scholar
  4. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy, pp. 161–162, Plenum Press, New York, NY.Google Scholar
  5. Laue, T. M., Shah, B. D., Ridgeway, T. M., and Pelletier, S. M. (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science, pp. 90–125, Eds. S. Harding & A. Rowe, Royal Society of Chemistry, London.Google Scholar
  6. Perrin, F. (1934) J. Phys. Rad., Ser. VII, V, 497–511.CrossRefGoogle Scholar
  7. Pessen, H., & Kumosinski, T. F. (1985) Methods Enzymol. 117, 219–255.PubMedCrossRefGoogle Scholar
  8. Small, E. W., & Isenberg, I. (1977) Biopolymers 16, 1907–1928.PubMedCrossRefGoogle Scholar
  9. Stafford, W. F. III, & Szent-Györgyi, A.G. (1978) Biochemistry 17, 607–614.PubMedCrossRefGoogle Scholar
  10. Tao, T. (1969) Biopolymers 8, 609–632.CrossRefGoogle Scholar
  11. Teller, D. C. (1976) Nature 260, 729–731.PubMedCrossRefGoogle Scholar
  12. Teller, D. C., Swanson, E., & de Haen, C. (1979) Methods Enzymol. 61, 103–124.PubMedGoogle Scholar
  13. Waxman, E., Ross, J. B. A., Laue, T. M., Guha, A., Thiruvikraman, S. V., Lin, T. C., Königsberg, W. H., & Nemerson, Y. (1992) Biochemistry 31, 3998–4003.PubMedCrossRefGoogle Scholar
  14. Waxman, E., Laws, W. R. Laue, T. M., Nemerson, Y., & Ross, J. B. A., (1993) Biochemistry 32, 3005–3012.PubMedCrossRefGoogle Scholar
  15. Yguerabide, J., Epstein, H.F., & Stryer, L. (1970) J. Mol. Bio. 51, 573–590.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • Evan Waxman
  • William R. Laws
  • Thomas M. Laue
  • J. B. Alexander Ross

There are no affiliations available

Personalised recommendations