Advertisement

Glutamate Autoreceptors in Mammalian Brain

  • David M. Lovinger
  • Nevin A. Lambert

Abstract

Neurotransmitter receptors that reside on presynaptic terminals which release the receptor-activating transmitter are known as autoreceptors (see Bartfai et al., 1988, for review). Activation of an autoreceptor by a particular neurotransmitter is presumed to regulate secretion of that same transmitter. Autoreceptors for a number of transmitters have now been identified. Most notable among these are the α1 adrenoreceptor in the peripheral nervous system (Alberts et al., 1981), the dopamine receptors present on neurons in substantia nigra (Carlsson, 1975), and the GABAB receptors present on GABAergic neurons (see Chapter 9; Baumann et al., 1990). In most cases autoreceptors belong to the class of receptors linked to guanosine triphosphate (GTP)-binding proteins (G proteins). Their mechanisms of action are thought to involve decreases in presynaptic terminal excitability via activation of K+ conductances, decreases in calcium influx into presynaptic terminals via inhibition of voltage-gated calcium channel function, or direct actions on transmitter-containing vesicles.

Keywords

Glutamate Receptor Metabotropic Glutamate Receptor Metabotropic Receptor Synaptic Depression Excitatory Synaptic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agopyan N, Agopyan I (1991): Effects of protein kinase C activators and inhibitors on membrane properties, synaptic responses, and cholinergic actions in CA1 subfield of rat hippocampus in situ and in vitro. Synapse 7:193–206PubMedCrossRefGoogle Scholar
  2. Akaike N, Shirasaki T, Harata N (1991): Metabotropic glutamate receptor activates the potassium conductance in freshly dissociated hippocampal CA1 neurons. Soc Neurosci Abstr 17:255Google Scholar
  3. Alberts P, Bartfai T, Stjärne L (1981): Site(s) and ionic basis of autoinhibition and facilitation of [3H]noradrenaline secretion in guinea-pig vas deferens. J Physiol (Lond) 312:297–334PubMedGoogle Scholar
  4. Anson J, Collins GGS (1987): Possible presynaptic actions of 2-amino-4-phosphonobu-tyrate in rat olfactory cortex. Br J Pharmacol 91:753–761PubMedGoogle Scholar
  5. Aramori I, Nakanishi S (1992): Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRl, in transfected CHO cells. Neuron 8:757–765PubMedCrossRefGoogle Scholar
  6. Bartfai T, Iverfeldt K, Fisone G, Serfözö P (1988): Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310PubMedCrossRefGoogle Scholar
  7. Baskys A, Malenka RC (1991a): Trans-ACPD depresses synaptic transmission in the hippocampus. Eur J Pharmacol 193:131–132PubMedCrossRefGoogle Scholar
  8. Baskys A, Malenka RC (1991b): Agonists at metabotropic glutamate receptors presynap-tically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444:687–702PubMedGoogle Scholar
  9. Baumann PA, Wicki P, Stierlin C, Waldmeier PC (1990): Investigations on GABAB receptor-mediated autoinhibition of GABA release. Naunyn-Schmiedebergs Arch Pharmacol 341:88–93PubMedGoogle Scholar
  10. Blanton MG, Lo Turco JJ, Kriegstein AR (1989): Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30(3):203–210PubMedCrossRefGoogle Scholar
  11. Calabresi P, Mercuri NB, Bernardi G (1992): Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum. Neurosci Lett 139:41–44PubMedCrossRefGoogle Scholar
  12. Carlsson A (1975): Receptor mediated control of dopamine metabolism. In: Pre- and Postsynaptic Receptors, Usdin E, Bunney B, Bunney WE, eds. New York: Marcel DekkerGoogle Scholar
  13. Charpak S, Gähwiler BH, Do KQ, Knöpfel T (1990): Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347:765–767PubMedCrossRefGoogle Scholar
  14. Chapman AG, Bowker HM (1987): Inhibition of hippocampal 3H-aspartate release by 2-APB, 2-APV, and 2-APH. In: Neurology and Neurobiology Vol. 24: Excitatory Amino Acid Transmission, Hicks TP, Lodge D, McLennan H, eds. New York: Alan R LissGoogle Scholar
  15. Collins GGS (1982): Some effects of excitatory amino acid receptor antagonists on synaptic transmission in the rat olfactory cortex slice. Brain Res 244:311–318PubMedCrossRefGoogle Scholar
  16. Collins GGS, Anson J, Surtees L (1983): Presynaptic kainate and N-methyl-D-aspartate receptor-mediated synaptic transmission in rat hippocampus. J Physiol (Lond), Brain Res 265:157–159Google Scholar
  17. Cordingley GE and Weight FF (1986): Non-cholinergic synaptic excitation in neostriatum: pharmacological evidence for mediation by a glutamate-like transmitter. Br J Pharmacol 88:847–856PubMedGoogle Scholar
  18. Crowder JM, Croucher MJ, Bradford HF, Collins JF (1987): Excitatory amino acid receptors and depolarization-induced Ca2+ influx into hippocampal slices. J Neurochem 48:1817–1924CrossRefGoogle Scholar
  19. Davies JD, Watkins JC (1982): Actions of D and L forms of 2-aminophosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Exp Brain Res 49:280–290Google Scholar
  20. Davies CH, Davies SN, Collingridge G (1990): Paired pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513PubMedGoogle Scholar
  21. Desai MA, Conn J (1991): Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic excitation. J Neurophysiol 66:40–52PubMedGoogle Scholar
  22. DiFiglia M (1990): Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289PubMedCrossRefGoogle Scholar
  23. Dunwiddie T, Madison D, Lynch G (1978): Synaptic transmission is required for initiation of long-term potentiation. Brain Res 169:103–110CrossRefGoogle Scholar
  24. Forsythe ID, Clements JD (1990): Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J Physiol 429:1–16PubMedGoogle Scholar
  25. Fredholm BB, Proctor W, Van Der Ploeg I, Dunwiddie TV (1989): In vivo pertussis toxin treatment attenuates some, but not all, adenosine A1 effects in slices of the rat hippocampus. Eur J Pharmacol 172:249–262PubMedCrossRefGoogle Scholar
  26. Glaum SR, Murphy SN, Miller RJ (1991): Effects of t-ACPD in simultaneous patch/slice fura-2 recordings of the nucleus tractus solitarius (NTS). Soc Neurosci Abstr 17:254Google Scholar
  27. Harris EW, Cotman CW (1983): Effects of acidic amino acid antagonists on paired-pulse potentiation at the lateral perforant path. Exp Brain Res 52:455–460PubMedCrossRefGoogle Scholar
  28. Harris EW, Stevens D, Cotman C (1987): Hippocampal cells primed with quisqualate are depolarized by AP4 and AP6 ligands for a putative glutamate uptake site. Brain Res 418:361–365PubMedCrossRefGoogle Scholar
  29. Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O’Hara PJ, Mulvihill ER, Almers W, Hagen FS (1991): Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252:1318–1321PubMedCrossRefGoogle Scholar
  30. Hu G-Y, Storm JF (1991): Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons. Neurosci Lett 568:339–344Google Scholar
  31. Klapstein GJ, Colmers WF (1992): 4-Aminopyridine and low Ca2+ differentiate presynaptic inhibition mediated by neuropeptide Y, baclofen and 2-chloroadenosine in rat hippocampal CA1 in vitro. Br J Pharmacol 105:470–474PubMedGoogle Scholar
  32. Koerner J, Cotman C (1981): Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res 216:192–198PubMedCrossRefGoogle Scholar
  33. Lambert NA, Teyler TJ (1991): Cholinergic disinhibition in area CA1 of the rat hippocampus is not mediated by receptors located on inhibitory neurons. Eur J Pharmacol 203:129–131PubMedCrossRefGoogle Scholar
  34. Lester RA, Jahr CE (1990): Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron 4:741–749PubMedCrossRefGoogle Scholar
  35. Lovinger DM (1991): Trans-l-amino-cyclopentane-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slice through a presynaptic action. Neurosci Lett 129:17–21PubMedCrossRefGoogle Scholar
  36. Lovinger DM, Tyler E, Merritt AW (1993): Properties of a presynaptic metabotropic glutamate receptor in rat neostriatal slices. J Neurophys (in press)Google Scholar
  37. Mansoni O, Fagni L, Pin J-P, Rassendren F, Poulat F, Sladeczek F, Bockaert J (1990): (trans)-1-Amino-cyclopentyl-l,3-dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes. J Pharmacol Exp Ther 38:1–6Google Scholar
  38. Martin D, Bustos GA, Bowe MA, Bray SD, Nadler JV (1991): Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area. J Neurochem 56:1647–1655PubMedCrossRefGoogle Scholar
  39. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991): Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765PubMedCrossRefGoogle Scholar
  40. McGeer EG, McGeer PL (1976): Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 263:517–519PubMedCrossRefGoogle Scholar
  41. McGuinness N, Anwyl R, Rowan M (1991): Trans-ACPD enhances long-term potentiation in the hippocampus. Eur J Pharmacol 197:231–232PubMedCrossRefGoogle Scholar
  42. McMahon HT, Barrie AP, Lowe M, Nicholls DG (1989): Glutamate release from guinea-pig synaptosomes: stimulation by reuptake-induced depolarization. J Neuro-chem 53:71–79Google Scholar
  43. Nawy S, Jahr CE (1990): Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346:269–271PubMedCrossRefGoogle Scholar
  44. Nicoli RA, Malenka RC, Kauer JA (1990): Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70:513–565Google Scholar
  45. Otani S, Aniksztejn L, Represa A, Ben-Ari Y (1991): Long-term potentiation (LTP) induced by metabotropic receptor activation coupled with subthreshold tetanus. Soc Neurosci Abstr 17:949Google Scholar
  46. Pacelli GJ, Kelso SR (1991): Trans-ACPD reduces multiple components of synaptic transmission in the rat hippocampus. Neurosci Lett 132:267–269PubMedCrossRefGoogle Scholar
  47. Palmer E, Monaghan DT, Cotman CW (1989): T-ACPD, a selective agonist of the phosphoinositide coupled excitatory amino acid receptor. Eur J Pharmacol 166:585–587PubMedCrossRefGoogle Scholar
  48. Pocock JM, Murphie H, Nicholls DG (1988): Kainic acid inhibits the synaptosomal plasma membrane glutamate carrier and allows glutamate leakage from the cytoplasm, but does not affect glutamate exocytosis. J Neurochem 50:745–751PubMedCrossRefGoogle Scholar
  49. Potashner SJ, Gerard D (1983): Kainate-enhanced release of d-[3H]aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital. J Neurochem 40:1548–1557PubMedCrossRefGoogle Scholar
  50. Robinson M, Whittemore E, Marks R, Koerner J (1986): Exposure of hippocampal slices to quisqualate sensitizes synaptic responses to phosphonate-containing analogues of glutamate. Brain Res 381:187–190PubMedCrossRefGoogle Scholar
  51. Sahara Y, Westbrook GL (1991): trans-ACPD blocks high threshold calcium currents on cultured hippocampal neurons. Soc Neurosci Abstr 17:1168Google Scholar
  52. Sayer RJ, Schwindt PC, Crill WE (1991): Metabotropic glutamate receptor modulates high-threshold calcium current of neurons acutely isolated from rat neocortex. Soc Neurosci Abstr 17:956Google Scholar
  53. Schoepp D, Bockaert J, Sladaczek F (1990): Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11:508–515PubMedCrossRefGoogle Scholar
  54. Scholz KP, Miller RJ (1991): Analysis of adenosine actions on Ca2+ currents and synaptic transmission in cultured rat hippocampal pyramidal neurones. J Physiol (Lond) 435:373–393PubMedGoogle Scholar
  55. Stratton KR, Cole AJ, Pritchett J, Eccles CU, Worley PF, Baraban JM (1989a): Intrahippocampal injection of pertussis toxin blocks adenosine suppression of synaptic responses. Brain Res 494:359–364PubMedCrossRefGoogle Scholar
  56. Stratton KR, Worley PF, Baraban JM (1989b): Excitation of hippocampal neurons by stimulation of Qp receptors. Eur J Pharm 173:235–237CrossRefGoogle Scholar
  57. Stratton KR, Worley PF, Baraban JM (1990): Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons. Eur J Pharmacol 186:357–361PubMedCrossRefGoogle Scholar
  58. Swartz KJ, Bean BP (1992): Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor. J Neurosci 12:4358–4371PubMedGoogle Scholar
  59. Swartz KJ, Merritt A, Bean BP, Lovinger DM (1993): Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 356:165–168CrossRefGoogle Scholar
  60. Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992): A family of metabotropic glutamate receptors. Neuron 8:169–179PubMedCrossRefGoogle Scholar
  61. Tyler EC, Lovinger DM, Merritt A (1992): Short and long-term synaptic depression in the neostriatum. Soc Neurosci Abstr 18:1351Google Scholar
  62. Williams ME, Brust PF, Feldman DH, Patthi S, Simerson S, Maroufi A, McCue AF, Veliçelebi G, Ellis SB, Harpold MM (1992): Structure and functional expression of an Ω-conotoxin-sensitive human N-type calcium channel. Science 257:389–395PubMedCrossRefGoogle Scholar
  63. Worley PF, Baraban JM, McCarren M, Snyder SH, Alger BE (1987): Cholinergic phosphoinositol modulation of inhibitory, G protein-linked, neurotransmitter actions: electrophysiological studies in rat hippocampus. Proc Natl Acad Sci USA 84:3467–3471PubMedCrossRefGoogle Scholar
  64. Zheng F, Gallagher JP (1991): Long-lasting modulation of synaptic transmission by a selective metabotropic glutamate receptor agonist in dorsolateral septal nucleus (DLSN) neurons in vitro. Soc Neurosci Abstr 17:950Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • David M. Lovinger
  • Nevin A. Lambert

There are no affiliations available

Personalised recommendations