Presynaptic Inhibition Mediated by Neuropeptide Y in the Mammalian CNS: Possible Physiological Implications

  • William F. Colmers
  • A. Rory McQuiston
  • Samuel B. Kombian
  • Gloria J. Klapstein


Although numerous transmitters are released by central neurons to mediate conventional synaptic transmission, it has become evident recently that there are other substances that can alter conventional synaptic transmission on a prolonged time scale relative to conventional transmitters. These substances, broadly classified as neuromodulators, can include most conventional transmitters, peptides, and other substances released by neurons, which act through pre- or postsynaptic receptors to change the level of transmitter release, change the properties of postsynaptic ion channels, alter the response of the postsynaptic cell to the actions of conventional transmitters, or alter other aspects of the biochemical machinery of the nerve cell or presynaptic terminal. In most cases, neuromodulators activate G protein-coupled receptors, which can activate (or inhibit) all known second messenger cascades, as well as ion channels and other cell surface effectors. While the interpretation of conventional fast chemical neurotransmission has been relatively straightforward, understanding the purpose of modulatory transmitters within a particular physiological system has not always been intuitive. This chapter addresses the presynaptic actions of one modulatory substance, neuropeptide Y (NPY), and advances hypotheses regarding the action of NPY in two central systems: the hippocampus and the serotonergic dorsal raphe nucleus of the brain stem.


Transmitter Release Presynaptic Terminal Dorsal Raphe Dorsal Raphe Nucleus Presynaptic Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aicher SA, Springston M, Berger SB, Reis DJ, Wahlestedt C (1991): Receptor-selective analogues demonstrate NPY/PYY receptor heterogeneity in rat brain. Neurosci Lett 130:32–36PubMedCrossRefGoogle Scholar
  2. Aitken A, Tork I (1988): Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of fetal rat brains. J Comp Neurol 274:32–47PubMedCrossRefGoogle Scholar
  3. Andén NE, Dahlstrom A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966): Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326CrossRefGoogle Scholar
  4. Azmitia EC, Segal M (1978): An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668PubMedCrossRefGoogle Scholar
  5. Balasubramaniam A, Sheriff S (1990): Neuropeptide Y(18–36) is a competitive antagonist of neuropeptide Y in rat cardiac ventricular membranes. J Biol Chem 265:14724–14727PubMedGoogle Scholar
  6. Baraban JM, Aghajanian, GK (1980): Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19:355–363PubMedCrossRefGoogle Scholar
  7. Bartfai T, Iverfeldt K, Fisone G, Serfözö P (1988): Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310PubMedCrossRefGoogle Scholar
  8. Bicknell RJ, Flint APF, Leng G, Sheldrick EL (1982): Phasic pattern of electrical stimulation enhances oxytocin secretion from the isolated neurohypophysis. Neurosci Lett 30:47–50CrossRefGoogle Scholar
  9. Bleakman DB, Colmers WF, Fournier A, Miller RJ (1991): Neuropeptide Y inhibits Ca+ + influx into cultured dorsal root ganglion neurones at the rat via a Y2 receptors. Br J Pharmacol 103:1781–1789PubMedGoogle Scholar
  10. Bleakman D, Harrison NL, Colmers WF, Miller RJ (1992): Investigations into neuropeptide Y-mediated presynaptic inhibition in cultured hippocampal neurones of the rat. Br J Pharmacol 107:334–340PubMedGoogle Scholar
  11. Bobker DH, Williams JT (1990): Serotonin-mediated inhibitory postsynaptic potentials in guinea pig prepositus hypoglossi and feedback inhibition by serotonin. J Physiol 422:447–462PubMedGoogle Scholar
  12. Bourque CW, Renaud LP (1990): Electrophysiology of mammalian magnocellular vasopressin and oxytocin neurosecretory neurons. Front Neuroendocrinol 11:183–212Google Scholar
  13. Colmers WF (1989): Neuropeptide Y inhibits only selected excitatory synapses in the rat hippocampal slice. Can J Physiol Pharmacol 67:AviiGoogle Scholar
  14. Colmers WF (1990): Modulation of synaptic transmission in hippocampus by NPY: presynaptic actions. Ann NY Acad Sci 611:206–218PubMedCrossRefGoogle Scholar
  15. Colmers WF, Lukowiak KD, Pittman QJ (1985): Neuropeptide Y reduces orthodromically-evoked population spike in rat hippocampal CA1 by a possibly presynaptic mechanism. Brain Res 346:404–408PubMedCrossRefGoogle Scholar
  16. Colmers WF, Lukowiak KD, Pittman QJ (1987): Presynaptic action of neuropeptide Y in CA1 of rat hippocampal slice. J Physiol 383:285–299PubMedGoogle Scholar
  17. Colmers WF, Lukowiak KD, Pittman QJ (1988): Neuropeptide Y action in the rat hippocampal slice: site and mechanism of presynaptic inhibition. J Neurosci 8:3827–3837PubMedGoogle Scholar
  18. Colmers WF, Klapstein GJ, Fournier A, St-Pierre S, Treherne KA (1991): Presynaptic inhibition by Neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Br J Pharmacol 120:41–44Google Scholar
  19. Colmers WF, Wahlestedt C, eds. (1993): The Biology of Neuropeptide Y and related peptides. Totowa, NJ: Humana PressGoogle Scholar
  20. Davies CH, Davies SN, Collingridge GL (1990): Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513–531PubMedGoogle Scholar
  21. de Quidt ME, Emson PC (1986): Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system—II. Immunohistochemical analysis. Neuroscience 18:545–618PubMedCrossRefGoogle Scholar
  22. Edwards FA, Konnerth A, Sakmann B (1990): Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J Physiol 430:213–249PubMedGoogle Scholar
  23. Ewald DA, Matthies HJG, Perney TM, Walker MW, Miller RJ (1988): The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by Neuropeptide Y. J Neurosci 8:2447–2451PubMedGoogle Scholar
  24. Ewald DA, Pang I-H, Sternweis PC, Miller RJ (1989): Differential G-protein mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal root ganglion neurons in vitro. Neuron 2:1185–1193PubMedCrossRefGoogle Scholar
  25. Fuhlendorff J, Johansen NL, Melberg SG, Thogersen H, Schwartz TW (1990): The antiparallel pancreatic polypeptide fold in the binding of Neuropeptide Y to Y1 and Y2 receptors. J Biol Chem 265:11706–11712PubMedGoogle Scholar
  26. Fuxe K, Jonsson G (1974): Further mapping of central 5-hydroxytryptamine neurons: studies with the neurotoxic dihydroxytryptamine. In: Serotonin: New Vistas, Histochemistry and Pharmacology, Costa E, Gessa GL, Sandler M, eds.Google Scholar
  27. Fuxe K, Jonsson G (1974): Further mapping of central 5-hydroxytryptamine neurons: studies with the neurotoxic dihydroxytryptamine. Adv Biochem Psychopharmacol 10:1–12PubMedGoogle Scholar
  28. Haas HL, Hermann A, Greene RW, Chan-Palay V (1987): Action and location of neuropeptide tysosine (Y) on hippocampus neurons of the rat in slice preparations. J Comp Neurol 257:208–215PubMedCrossRefGoogle Scholar
  29. Hendry SHC (1993): Organization of Neuropeptide Y neurons in the mammalian central nervous system. In: The Biology of Neuropeptide Y and related peptides, Colmers WF, Wahlestedt C, eds. Totowa, NJ: Humana PressGoogle Scholar
  30. Illes P, Regenold JT (1990): Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Nature 344:62–63PubMedCrossRefGoogle Scholar
  31. Johnston D, Brown TH (1984): Biophysics and microphysiology of synaptic transmission in hippocampus. In: Brain Slices, Dingledine R, ed. New York: PlenumGoogle Scholar
  32. Kalen P, Karlson M, Wiklund L (1985): Possible excitatory amino acid afferents to nucleus raphe dorsalis of the rat investigated with retrograde wheat germ agglutinin and D-[3H]-aspartate tracing. Brain Res 360:285–297PubMedCrossRefGoogle Scholar
  33. Kalen P, Pritzel M, Nieoullon A, Wiklund L (1986): Further evidence for excitatory amino acid transmission in the lateral habernular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neurosci Lett 68:35–40PubMedCrossRefGoogle Scholar
  34. Klapstein GJ, Colmers WF (1992): 4-Aminopyridine and low Ca2+ differentiate presynaptic inhibition mediated by neuropeptide Y, baclofen and 2-chloroadenosine in rat hippocampal CA1 in vitro. Br J Pharmacol 105:470–474Google Scholar
  35. Klapstein GJ, Colmers WF (1991): NPY inhibits feedforward IPSP’s in hippocampus by reducing excitatory input to interneurons. Soc Neurosci Abstr 17:975Google Scholar
  36. Klapstein GJ and Colmers WF (1993): On the sites of presynaptic inhibition by neuropeptide Y in rat hippocampus in vitro. Hippocampus 3:103–112PubMedCrossRefGoogle Scholar
  37. Köhler C, Eriksson L, Davies S, Chan-Palay V (1986): Neuropeptide Y innervation of the hippocampal region in the rat and monkey brain. J Comp Neurol 244:384–400PubMedCrossRefGoogle Scholar
  38. Köhler C, Schultzberg M, Radesäter AM (1987): Distribution of neuropeptide Y receptors in the rat hippocampal region. Neurosci Lett 75:141–146PubMedCrossRefGoogle Scholar
  39. Kombian SB, Colmers WF (1992): Neuropeptide Y selectively inhibits slow synaptic potentials in rat dorsal raphe nucleus in vitro by a presynaptic action. J Neurosci 12:1086–1093PubMedGoogle Scholar
  40. Lacaille JC, Kunkel DD, Schwartzkroin PA (1989): Electrophysiological and morphological characterization of hippocampal interneurons. In: The Hippocampus: New Vistas, Chan-Palay V, Köhler C, eds. New York: Alan R. LissGoogle Scholar
  41. Lopez-Ibor JJ (1988): The involvement of serotonin in psychiatric disorders and behavior. Br J Psychiatr 153(Suppl 3):26–39Google Scholar
  42. Madison DV, Nicoli RA (1982): Noradrenaline blocks accommodation of pyramidal cell discharge in hippocampus. Nature 299:636–638PubMedCrossRefGoogle Scholar
  43. Manabe T, Renner P, Nicoli RA (1992): Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355:50–55PubMedCrossRefGoogle Scholar
  44. Martel J-C, Fournier A, St. Pierre S, Quirion R (1990): Quantitative autoradiographic distribution of [125I] Bolton-Hunter neuropeptide Y receptor binding sites in rat brain. Comparison with [125I]-peptide YY receptor sites. Neuroscience 36:255–283PubMedCrossRefGoogle Scholar
  45. Martel J-C, St-Pierre S, Quirion R (1986): Neuropeptide Y receptors in rat brain: autoradiographic localization. Peptides 7:55–60PubMedCrossRefGoogle Scholar
  46. McBain CJ, Dingledine R (1990): Patch clamp recording of spontaneous synaptic currents from CA3 pyramidal neurons in rat hippocampal slices. Soc Neurosci Abstr 16:60Google Scholar
  47. McCarren M, Alger BE (1985): Use-dependent depressions of IPSP’s in rat hippocampal pyramidal cells in vitro. J Neurophysiol 53:557–571PubMedGoogle Scholar
  48. McLean LR, Buck SH, Krstenansky JL (1990): Examination of the role of the amphipathic α-helix in the interaction of neuropeptide Y and active cyclic analogues with cell membrane receptors and dimyristoylphosphatidylcholine. Biochemistry 29:2016–2022PubMedCrossRefGoogle Scholar
  49. McQuiston AR, Colmers WF (1991): Neuropeptide Y (NPY) does not alter postsynaptic NMDA currents in pyramidal neurons of area CA3 of the rat hippocampal slice. Soc Neurosci Abstr 17:975Google Scholar
  50. McQuiston AR, Colmers WF (1992): Neuropeptide Y does not alter NMDA conductances in rat pyramidal neurons in he in vitro hippocampal slice preparation. Neurosci Lett 138:261–264PubMedCrossRefGoogle Scholar
  51. Milner TA, Veznedaroglu E (1992): Ultrastructural localization of neuropeptide Y-like immunoreactivity in the rat hippocampal formation. Hippocampus 2:107–126PubMedCrossRefGoogle Scholar
  52. Mulligan KA, Tork I (1987): Serotonergic axons form basketlike terminals in cerebral cortex. Neurosci Lett 81:7–12PubMedCrossRefGoogle Scholar
  53. Mulligan KA, Tork I (1988): Serotonergic innervation of the cat cerebral cortex. J Comp Neurol 270:86–110PubMedCrossRefGoogle Scholar
  54. O’Donoghue TL, Chronwall BM, Pruss RM, Mezey E, Kiss JZ, Eiden LE, Massari VJ, Tessei RE, Pickel VM, DiMaggio DA, Hotchkiss AJ, Crowley WR, Zukowska-Grojec Z (1985): Neuropeptide Y and peptide YY neuronal and endocrine systems. Peptides 6:755–768CrossRefGoogle Scholar
  55. Pan ZZ, Colmers WF, Williams JT (1989): 5-HT mediated synaptic potentials in the dorsal raphe nucleus: interactions with excitatory amino acid and GABA neurotransmission. J Neurophysiol 62:481–486Google Scholar
  56. Pan ZZ, Williams JT (1989a): Differential actions of cocaine and amphetamine on dorsal raphe neurons in vitro. J Pharmacol Exp Ther 251:56–62PubMedGoogle Scholar
  57. Pan ZZ, Williams JT (1989b): GABA- and glutamate-mediated synaptic potentials in rat dorsal raphe nucleus in vitro. J Neurophysiol 61:719–726PubMedGoogle Scholar
  58. Paxinos G, Watson C (1986): The Rat Brain in Stereotaxic Coordinates. New York: Academic PressGoogle Scholar
  59. Schofield GG, Ikeda SR (1988): Neuropeptide Y blocks a calcium current in C cells of bullfrog sympathetic ganglia. Eur J Pharmacol 151:131–134PubMedCrossRefGoogle Scholar
  60. Silinsky EM (1985): The biophysical pharmacology of calcium-dependent acetylcholine secretion. Pharmacol Rev 37:81–132PubMedGoogle Scholar
  61. Sloviter RS, Nilaver G (1987): Immunocytochemical localization of GABA-, cholecysto-kinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol 256:42–60PubMedCrossRefGoogle Scholar
  62. Sloviter RS (1987): Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235:73–76PubMedCrossRefGoogle Scholar
  63. Sloviter RS (1989): L Chemically-define hippocampal interneurons and their possible relationship to seizure mechanisms. In: The Hippocampus: New Vistas, Chan-Palay V, Köhler C, eds. New York: Alan R. LissGoogle Scholar
  64. Staley KJ, Mody I, (1991): Integrity of perforant path fibers and the frequency of action potential independent excitatory and inhibitory events in dentate gyrus granule cells. Synapse 9:219–224PubMedCrossRefGoogle Scholar
  65. Stretton D, Miura M, Belvisi MG, Barnes PJ (1992): Calcium-activated potassium channels mediate prejunctional inhibition of peripheral sensory nerves. Proc Nat Acad Sci USA 89:1325–1329PubMedCrossRefGoogle Scholar
  66. Wahlestedt C, Grundemar L, Håkanson R, Heilig M, Shen GH, Zukowska-Grojec Z, Reis DJ (1990): Neuropeptide Y receptor subtypes, Y1 and Y2. Ann NY Acad Sci 611:7–26PubMedCrossRefGoogle Scholar
  67. Wahlestedt C, Yanaihara N, Hâkanson R (1986): Evidence for different pre and postjunctional receptors for neuropeptide Y and related peptides. Reg Pept 13:307–318CrossRefGoogle Scholar
  68. Widerlöv E, Heilig M, Ekman R, Wahlestedt C (1989): Neuropeptide Y—possible involvement in depression and anxiety. In: Nobel Conference on NPY, Mutt V, Fuxe K, Hökfelt T, eds. New York: Raven PressGoogle Scholar
  69. Zidichouski JA, Chen H, Smith PA (1990): Neuropeptide Y activates inwardly-rectifying K+-channels in C-cells of amphibian sympathetic ganglia. Neurosci Lett 117:123–128PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • William F. Colmers
  • A. Rory McQuiston
  • Samuel B. Kombian
  • Gloria J. Klapstein

There are no affiliations available

Personalised recommendations