Advertisement

Presynaptic and Postsynaptic Actions of Somatostatin in Area CA1 and the Dentate Gyrus of Rat and Rabbit Hippocampal Slices

  • Helen E. Scharfman

Abstract

Specific peptides that may be neurotransmitters or neuromodulators are found in a variety of neurons in the central nervous system. Often these “neuropeptides” are packaged in combination with classical neurotransmitters (Hökfelt et al., 1986; Iversen and Goodman, 1986; Kupfermann, 1991). A great deal of information concerning the colocalization of neuropeptides and classical neurotransmitters has resulted from immunocytochemical studies. However, the exact physiological function of many neuropeptides has been elusive. Even in cases where physiologists have determined the effects of exogenous application of peptides on discrete brain areas, how the neuropeptides function in situ is not necessarily clear. Moreover, it is often unclear if a neuropeptide acts in concert with the classical neurotransmitter packaged in the same cell, whether the neuropeptide acts independently from the classical neurotransmitter, or whether the neuropeptide acts in both ways under different circumstances.

Keywords

Dentate Gyrus Pyramidal Cell Stratum Radiatum Synaptic Potential Postsynaptic Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger BE, Nicoli RA (1982): Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141PubMedGoogle Scholar
  2. Andersen P, Dingledine R, Gjerstad L, Langmoen IA, Mosfeldt-Laursen AM (1980): Two different responses of hippocampal pyramidal cells to application of gamma-aminobu-tyric acid. J Physiol 305:279–296PubMedGoogle Scholar
  3. Andersen P, Eccles JC, Løyning Y (1963): Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature 198:540–542PubMedCrossRefGoogle Scholar
  4. Assouline G, Barkaie E, Gutnick MJ (1984): Cysteamine suppresses kindled seizures in pentylenetetrazol-kindled rats. Eur J Pharmacol 106:649–652PubMedCrossRefGoogle Scholar
  5. Bakst I, Avendano C, Morrison JH, Amarai DG (1986): An experimental analysis of the origins of somatostatin-like immunoreactivity in the dentate gyrus of the rat. J Neurosci 6:1452–1462PubMedGoogle Scholar
  6. Bakst I, Morrison JH, Amaral DG (1985): The distribution of somatostatin-like immunoreactivity in the monkey hippocampal formation. J Comp Neurol 236:423–442PubMedCrossRefGoogle Scholar
  7. Bartfai T, Iverfeldt K, Fisone G (1988): Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310PubMedCrossRefGoogle Scholar
  8. Bauer W, Briner U, Doepfner W (1982): SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140PubMedCrossRefGoogle Scholar
  9. Ben-Ari Y, Krnjevic K, Reinhardt W (1979): Hippocampal seizures and failure of inhibition. Can J Physiol Pharmacol 57:1462–1466CrossRefGoogle Scholar
  10. Bliss TVP, Lømo T (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedGoogle Scholar
  11. Bonanno G, Raiteri M, Emson PC (1988): In vitro release of somatostatin from cerebral cortical slices; characteristics of electrically evoked release. Brain Res 447:92–97PubMedCrossRefGoogle Scholar
  12. Bouras D, Magistretti PJ, Morrison JH (1986): An immunohistochemical study of six biologically active peptides in the human brain. Human Neurobiol 5:213–226Google Scholar
  13. Bulloch AGM (1987): Somatostatin enhances neurite outgrowth and electrical coupling of regenerating neurons in Helisoma. Brain Res 412:6–17PubMedCrossRefGoogle Scholar
  14. Buzsáki G (1984): Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22:131–153PubMedCrossRefGoogle Scholar
  15. Catalán R, Aragonés MD, Martínez AM (1979): Somatostatin effect on cyclic AMP and cyclic GMP levels in rat brain. Biochim Biophys Acta 586:213–216CrossRefGoogle Scholar
  16. Catalán R, Martínez AM, Aragonés MD (1983): Inhibition of cyclic AMP-dependent protein kinase by somatostatin in slices of mouse brain: dependence on extracellular calcium. Neuropharmacology 22:641–645PubMedCrossRefGoogle Scholar
  17. Chan-Palay V (1987): Somatostatin-immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification of vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J Comp Neurol 260:201–223PubMedCrossRefGoogle Scholar
  18. Charnay Y, Leroux P, Epelbaum J, Enjalbert A, Vaudry H, Dubois PM (1988): Displaceable somatostatin binding sites in the gray matter and pyramidal paths of the human developing spinal cord. Neurosci Lett 84:245–250PubMedCrossRefGoogle Scholar
  19. Chun JJM, Nakamura MJ, Shatz CJ (1987): Transient cells of the developing mammalian telencephalon are peptide immunoreactive neurons. Nature 325:617–620PubMedCrossRefGoogle Scholar
  20. Colmers WF, Lukowiak K, Pittman QJ (1988): Neuropeptide Y action in the rat hippocampal slice: site and mechanism of presynaptic inhibition. J Neurosci 8:3827–3837PubMedGoogle Scholar
  21. Cronin MJ, Rogol AD, Myers GA, Hewlett HL (1983): Pertussis toxin blocks the somatostatin-induced inhibition of growth hormone release and adenosine-3′,5′-monophosphate accumulation. Endocrinology 113:209–214PubMedCrossRefGoogle Scholar
  22. Davies CH, Starkey SJ, Pozza MF, Collingridge GL (1991): GABAB autoreceptors regulate the induction of LTP. Nature 349:609–611PubMedCrossRefGoogle Scholar
  23. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989): Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395PubMedCrossRefGoogle Scholar
  24. Deisz RA, Prince DA (1989): Frequency-dependent depression of inhibition in guinea pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol 412:513–541PubMedGoogle Scholar
  25. Delfs JR, Dichter MA (1983): Effects of somatostatin on mammalian cortical neurons in culture: physiological actions and unusual dose response characteristics. J Neurosci 3:1176–1188PubMedGoogle Scholar
  26. Delfs JR, Rens-Domiano S, Benovic J, Reisine T (1991): Regulation of somatostatin receptors by beta-adrenergic receptor kinase (BARK). Soc Neurosci Abst 17:804Google Scholar
  27. Dichter MA, Wang H-L, Reisine T (1990): Electrophysiological effects of somatostatin-14 and somatostatin-28 on mammalian central nervous system neurons. Metabolism 39:86–90PubMedCrossRefGoogle Scholar
  28. Dingledine R (1984): Hippocampus: synaptic pharmacology. In: Brain Slices, Dingledine R, ed. New York: Plenum PressGoogle Scholar
  29. Dodd J, Kelly JS (1978): Is somatostatin an excitatory transmitter in hippocampus? Nature 273:674–675PubMedCrossRefGoogle Scholar
  30. Dokas L, Klis M, Liauw A, Coy DH (1985): Characteristics of [D-Trp8]-somatostatin-sensitive B50 phosphorylation. Peptides 6:1101–1107PubMedCrossRefGoogle Scholar
  31. Feldman SC, Dreyfus CF, Lichtenstein ES (1982): Somatostatin neurons in the rodent hippocampus: an in vitro and in vivo immunocytochemical study. Neurosci Lett 33:29–34PubMedCrossRefGoogle Scholar
  32. Finley JCW, Maderdrut JL, Roger LJ, Petrusz P (1981): The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neuroscience 6:2173–2192PubMedCrossRefGoogle Scholar
  33. Fitzpatrick-McElligott S, Card JP, Lewis ME, Baldino F (1988): Neuronal localization of prosomatostatin mRNA in the rat brain with in situ hybridization histochemistry. J Comp Neurol 273:558–572PubMedCrossRefGoogle Scholar
  34. Gall C, Brecha N, Parnavelas JG (1984): Development of peptide immunoreactivity in the hippocampus, visual cortex, and retina. In: Organizing Principles of Neural Development, Sharma V, ed. New York: Plenum PressGoogle Scholar
  35. Gonzalez BJ, Leroux P, Laquerrière A, Coy DH, Bodenant C, Baudry H (1988): Transient expression of somatostatin receptors in the rat cerebellum during development. Dev Brain Res 40:154–157CrossRefGoogle Scholar
  36. Higuchi T, Sikand GS, Nobumasa K, Wada JA, Friesen HG (1983): Profound suppression of kindled seizures by cysteamine: possible role of somatostatin to kindled seizures. Brain Res 288:359–362PubMedCrossRefGoogle Scholar
  37. Hobbach HP, Hurth S, Jost D, Racke K (1988): Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. J Physiol 397:539–554PubMedGoogle Scholar
  38. Hökfelt T, Fuxe K, Pernow B, eds. (1986): Coexistence of neuronal messengers: a new principle in chemical transmission. Prog Brain Res 68:1–403Google Scholar
  39. Ioffe S, Havlicek V, Friesen H, Chernick V (1978): Effect of somatostatin (SRIF) and L-glutamate on neurons of the sensorimotor cortex of awake habituated rabbits. Brain Res 153:414–418PubMedCrossRefGoogle Scholar
  40. Iversen LL, Goodman E (1986): Fast and Slow Chemical Signalling in the Nervous System. Oxford: Oxford University PressGoogle Scholar
  41. Johansson O, Hökfelt T, Elde RP (1984): Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the rat. Neuroscience 13:265–339PubMedCrossRefGoogle Scholar
  42. Koch BD, Schonbrunn A (1984): The somatostatin receptor is directly coupled to adenylate cyclase in GH4 CI pituitary cell membranes. Endocrinology 114:1784–1790PubMedCrossRefGoogle Scholar
  43. Köhler C, Chan-Palay V (1982): Somatostatin-like immunoreactivity in the hippocampus: an immunohistochemical study in the rat. Neurosci Lett 34:259–264PubMedCrossRefGoogle Scholar
  44. Köhler C, Eriksson LG, Davies S, Chan-Palay V (1987): Co-localization of neuropeptide tyrosine and somatostatin immunoreactivity in neurons of individual subfields of the rat hippocampal region. Neurosci Lett 78:1–6PubMedCrossRefGoogle Scholar
  45. Kunkel DD, Schwartzkroin PA (1988): Ultrastructural characterization and GAD co-localization of somatostatin-like immunoreactive neurons in CA1 of rabbit hippocampus. Synapse 2:371–381PubMedCrossRefGoogle Scholar
  46. Kunkel DD, Lacaille J-C, Schwartzkroin PA (1988): Ultrastructure of stratum lacunosum-moleculare interneurons of hippocampal CA1 region. Synapse 2:382–394PubMedCrossRefGoogle Scholar
  47. Kupfermann I (1991): Functional studies of cotransmission. Physiol Rev 71:683–732PubMedGoogle Scholar
  48. Lacaille J-C, Mueller AL, Kunkel DD, Schwartzkroin PA (1987): Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7:1979–1993PubMedGoogle Scholar
  49. Landfield PW, Deadwyler SA, eds. (1988): Long-Term Potentiation: From Biophysics to Behavior. New York: LissGoogle Scholar
  50. Leranth C, Malcolm AJ, Frotscher M (1990): Afferent and efferent synaptic connections of somatostatin-immunoreactive neurons in the rat fascia dentata. J Comp Neurol 295:111–122PubMedCrossRefGoogle Scholar
  51. Lundberg JM, Anggard A, Fahrenkrug J, Lundgren G, Holmstedt G (1982): Corelease of VIP and acetylcholine in relation to bloodflow and salivary secretion in cat submandibular salivary gland. Acta Physiol Scand 115:525CrossRefGoogle Scholar
  52. Madison DV, Nicoli RA (1982): Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636–638PubMedCrossRefGoogle Scholar
  53. Mancillas JR, Siggins GR, Bloom FE (1986): Somatostatin selectively enhances acetylcho-line-induced excitations in rat hippocampus and cortex. Proc Natl Acad Sci USA 83:7518–7521PubMedCrossRefGoogle Scholar
  54. Marin P, Delumeau JC, Tence M, Cordier J, Glowinski J, Premont J (1991): Somatostatin potentiates the α1-adrenergic activation of phospholipase C in striatal astrocytes through a mechanism involving arachidonic acid and glutamate. Proc Natl Acad Sci USA 88:9016–9020PubMedCrossRefGoogle Scholar
  55. Matsuoka N, Kaneko S, Satoh M (1991): A facilitatory role of endogenous somatostatin in long-term potentiation of the mossy fiber-CA3 system in guinea-pig hippocampus. Neurosci Lett 129:177–180PubMedCrossRefGoogle Scholar
  56. Maurer R, Reubi JC (1985a): Brain somatostatin receptor subpopulation visualized by autoradiography. Brain Res 333:178–181PubMedCrossRefGoogle Scholar
  57. Maurer R, Reubi JC (1985b): Somatostatin receptors. JAMA 253:2741PubMedCrossRefGoogle Scholar
  58. McCarren M, Alger BE (1985): Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J Neurophysiol 53:557–571PubMedGoogle Scholar
  59. McCarty R, Plunkett LM (1987): Quantitative autoradiographic analysis of somatostatin binding sites in discrete areas of rat forebrain. Brain Res Bull 18:29–34PubMedCrossRefGoogle Scholar
  60. Moore SD, Madamba SG, Joëls M, Siggins G (1988): Somatostatin augments the M-current in hippocampal neurons. Science 239:278–280PubMedCrossRefGoogle Scholar
  61. Morrison JH, Benoit R, Magistretti P, Ling N, Bloom FE (1982): Immunohistochemical distribution of pro-somatostatin-related peptides in hippocampus. Neurosci Lett 34:137–142PubMedCrossRefGoogle Scholar
  62. Moser A, Reavill C, Jenner P, Marsden CD, Cramer H (1986): Effects of somatostatin on dopamine-sensitive adenylate cyclase activity in the caudate-putamen of the rat. Exp Brain Res 62:567–571PubMedCrossRefGoogle Scholar
  63. Mott DD, Lewis DV (1991): Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252:1718–1720PubMedCrossRefGoogle Scholar
  64. Mueller AL, Kunkel DD, Schwartzkroin PA (1986): Electrophysiological actions of somatostatin (SRIF) in hippocampus: an in vitro study. Cell Mol Neurobiol 6:363–379PubMedCrossRefGoogle Scholar
  65. Naus CCG (1989): Development of somatostatin-like immunoreactivity in the hippocampal formation of normal and reeler mice. Neurosci Lett 96:133–139PubMedCrossRefGoogle Scholar
  66. Naus CCG, Morrison JH, Bloom FE (1988): Development of somatostatin-containing neurons and fibers in the rat hippocampus. Dev Brain Res 40:113–121CrossRefGoogle Scholar
  67. Nicoli RA (1988): The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551CrossRefGoogle Scholar
  68. Obata-Tsuto HL (1987): Light and electron microscopic study of somatostatin-like immunoreactive neurons in rat hippocampus. Brain Res Bull 18:613–620PubMedCrossRefGoogle Scholar
  69. Olpe H-R, Balcar VJ, Bittiger H, Rink H, Sieber P (1980): Central actions of somatostatin. Eur J Pharmacol 63:127–133PubMedCrossRefGoogle Scholar
  70. Palacios JM, Reubi JC, Maurer R (1986): Somatostatin receptors in rat hippocampus: localization to intrinsic neurons. Neurosci Lett 67:169–174PubMedCrossRefGoogle Scholar
  71. Papadopoulos GC, Karamanlidis AN, Dinopoulos A, Antonopoulos J (1986): Somatostat-inlike immunoreactive neurons in the hedgehog (Erinaceus europaeus) and the sheep (Ovis aries) central nervous system. J Comp Neurol 244:174–192PubMedCrossRefGoogle Scholar
  72. Parnavelas JG, Cavanagh ME (1988): Transient expression of neurotransmitters in the developing neocortex. Trends Neurosci 11:92–93PubMedCrossRefGoogle Scholar
  73. Peng Y, Horn JP (1991): Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia. J Neurosci 11:85–95PubMedGoogle Scholar
  74. Perlin JB, Lothman EW, Geary WA (1987): Somatostatin augments the spread of limbic seizures from the hippocampus. Ann Neurol 21:475–480PubMedCrossRefGoogle Scholar
  75. Petrusz P, Sar M, Grossman GH, and Kizer JS (1977): Synaptic terminals with somatostatin-like immunoreactivity in the rat brain. Brain Res 137:181–187PubMedCrossRefGoogle Scholar
  76. Phillis JW, Kirkpatrick JR (1980): The actions of motilin, luteinizing hormone releasing hormone, cholecystokinin, somatostatin, vasoactive intestinal peptide, and other peptides on rat cerebral cortical neurons. Can J Physiol Pharmacol 58:612–623PubMedCrossRefGoogle Scholar
  77. Pitkänen A, Jolkkonen J, Riekkinen PJ (1987): Somatostatin-like immunoreactivity (SLI) in cisternal cerebrospinal fluid of rats kindled by pentylenetetrazol. Brain Res 416:180–182PubMedCrossRefGoogle Scholar
  78. Pittman QJ, Siggins GR (1981): Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro. Brain Res 221:402–408PubMedCrossRefGoogle Scholar
  79. Rapp PR, Amarai DG (1988): The time of origin of somatostatin-immunoreactive neurons in the rat hippocampal formation. Dev Brain Res 41:231–239CrossRefGoogle Scholar
  80. Reisine T, He H-T, Rens-Domiano S, Martine J-M, Raynor K, Borislow S, Thermos K (1990): Biochemical properties of somatostatin receptors. Metabolism 9(2):70–73CrossRefGoogle Scholar
  81. Reubi JC (1984): Evidence of two somatostatin-14 receptor types in rat brain cortex. Neurosci Lett 49:259–263PubMedCrossRefGoogle Scholar
  82. Reubi JC, Cortés R, Maurer R, Probst A, Palacios JM (1986): Distribution of somatostatin receptors in the human brain: an autoradiographic study. Neuroscience 18:329–346PubMedCrossRefGoogle Scholar
  83. Reubi JC, Maurer R (1986): Different ionic requirements for somatostatin receptor subpopulations in the brain. Reg Peptides 14:301–311CrossRefGoogle Scholar
  84. Roberts GW, Woodhams PL, Polak JM, Crow TJ (1984): Distribution of neuropeptides in the limbic system of the rat: the hippocampus. Neuroscience 11:35–77PubMedCrossRefGoogle Scholar
  85. Rouleau D, and Barden N (1981): Inhibition of anterior pituitary prostaglandin-stimulated adenylyl cyclase activity by somatostatin. Can J Biochem 59:307PubMedCrossRefGoogle Scholar
  86. Samulack DD, Lacaille J-C (1991): GABA receptor-mediated synaptic potentials in rat hippocampal CA1 pyramidal cells elicited by glutamate microapplication at the oriens/alveus border or in stratum pyramidale. Soc Neurosci Abs 17:1169Google Scholar
  87. Scharfman HE, Sarvey JS (1985): Postsynaptic firing during repetitive stimulation is required for long-term potentiation in hippocampus. Brain Res 331:267–274PubMedCrossRefGoogle Scholar
  88. Scharfman HE, Sarvey JS (1987): Responses to GABA recorded from identified rat visual cortical neurons. Neuroscience 23:407–422PubMedCrossRefGoogle Scholar
  89. Scharfman HE, Schwartzkroin PA (1988a): Further studies of the effects of somatostatin and related peptides in area CA1 of rabbit hippocampus. Cell Mol Neurobiol 8:411–429PubMedCrossRefGoogle Scholar
  90. Scharfman HE, Schwartzkroin PA (1988b): Selective depression of GABA-mediated IPSPs by somatostatin in area CA1 of rabbit hippocampal slices. Brain Res 493:205–211CrossRefGoogle Scholar
  91. Schwartzkroin PA, Scharfman HE, Sloviter RS (1990): Similarities in circuitry between Amnion’s horn and dentate gyrus: local interactions and parallel processing. Prog Brain Res 83:267–286Google Scholar
  92. Seress L, Ribak CE (1985): A combined Golgi-electron microscopic study of non-pyramidal neurons in the CA1 area of the hippocampus. J Neurocytol 14:717–730PubMedCrossRefGoogle Scholar
  93. Sloviter RS (1991): Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41–66PubMedCrossRefGoogle Scholar
  94. Sloviter RS, Nilaver G (1987): Immunocytochemical localization of GABA-, cholecysto-kinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol 256:42–60PubMedCrossRefGoogle Scholar
  95. Smock T, Cach R, Topple A (1987): Action of vasopressin on neurons and microvessels in the rat hippocampal slice. Exp Brain Res 66:401–408PubMedCrossRefGoogle Scholar
  96. Somogyi P, Smith AD, Nunzi MG, Gorio A, Takagi H, Wu J-Y (1983): Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neurosci 3:1450–1468PubMedGoogle Scholar
  97. Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu J-Y (1984): Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecysotokinin-immunoreactive material. J Neurosci 4:2590–2603PubMedGoogle Scholar
  98. Takazawa A, Abraham WC, Bilkey DK (1990): Time-dependent pro- and anticonvulsant effects of cysteamine on the development and expression of amygdaloid kindled seizures. Epilepsy Res 7:86–94PubMedCrossRefGoogle Scholar
  99. Thompson SM, Gähwiler BH (1989a): Activity-dependent disinhibition. I. Repetitive stimulation reduces both IPSP driving force and conductance in the hippocampus in vitro. J Neurophysiol 61:501–511PubMedGoogle Scholar
  100. Thompson SM, Gähwiler BH (1989b): Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. J Neurophysiol 61:512–523PubMedGoogle Scholar
  101. Thompson SM, Gähwiler BH (1989c): Activity-dependent disinhibition. III. Desensitiza-tion and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. J Neurophysiol 61:524–533PubMedGoogle Scholar
  102. Tran VT, Beal MF, Martin JB (1985): Two types of somatostatin receptors differentiated by cyclic somatostatin analogs. Science 228:492–495PubMedCrossRefGoogle Scholar
  103. Twery MJ, Gallagher JP (1988): Synaptic transmission and passive membrane properties of neurons in rat dorsolateral septal nucleus are affected by somatostatin in vitro. Soc Neurosci Abst 14:279Google Scholar
  104. Uhl G, Tran V, Snyder SH, Martin JB (1985): Somatostatin receptors: distribution in rat central nervous system and human frontal cortex. J Comp Neurol 240:288–304PubMedCrossRefGoogle Scholar
  105. Verhage M, Ghijsen WEJM, Nicholls DG, Wiegant VM (1991): Characterization of the release of cholecystokinin-8 from isolated nerve terminals and comparison with exocytosis of classical transmitters. J Neurochem 56:1394–1400PubMedCrossRefGoogle Scholar
  106. Vidal C, Zieglgänsberger W (1989): Actions of somatostatin on rat neocortical neurons in vitro. Eur J Neurosci 1:489–493PubMedCrossRefGoogle Scholar
  107. Vincent SR, Mcintosh CHS, Buchan AMJ, Brown JC (1985): Central somatostatin systems revealed with monoclonal antibodies. J Comp Neurol 238:169–186PubMedCrossRefGoogle Scholar
  108. Wahle P, Meyer G (1987): Morphology and quantitative changes of transient NPY-in neuronal populations during early postnatal development of the cat visual cortex. J Comp Neurol 261:165–192PubMedCrossRefGoogle Scholar
  109. Watson TWJ, Pittman QJ (1988a): Pharmacological evidence that somatostatin activates the M-current in hippocampal pyramidal neurons. Neurosci Lett 91:172–176PubMedCrossRefGoogle Scholar
  110. Watson TWJ, Pittman QJ (1988b): Somatostatin-(14) and -(28) but not somatostatin (1–12) hyperpolarize CA1 pyramidal neurons in vitro. Brain Res 448:40–45PubMedCrossRefGoogle Scholar
  111. Wigström H, Gustafsson B (1983): Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition. Nature 301:603–604PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Helen E. Scharfman

There are no affiliations available

Personalised recommendations