Skip to main content
  • 36 Accesses

Abstract

Two purposes guided the writing of this introductory chapter. My first objective was to provide a concise history and background to the topic covered in this book. In doing so, I have drawn from specific examples of presynaptic inhibition that are not addressed in later chapters. This is an attempt to bind together work performed on a variety of preparations to provide an expanded view of our understanding of the mechanisms of presynaptic inhibition and how this understanding was obtained. It is anticipated that a discussion of these issues will expose important links between mechanisms of presynaptic inhibition in different preparations. A more thorough historical background can be obtained from Eccles (1964) and Nicoli and Alger (1979). My second objective was to present areas of research that I believe will be important in the near future or that perhaps deserve more attention than they have received.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anwyl R (1991): Modulation of vertebrate neuronal calcium channels by transmitters. Brain Res Rev 16:265–281

    Article  PubMed  CAS  Google Scholar 

  • Barron DH, Matthews BHC (1938): The interpretation of potential changes in the spinal cord. J Physiol (Lond) 92:276–321

    PubMed  CAS  Google Scholar 

  • Baskys A, Malenka RC (1991): Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol (Lond) 444:687–701

    PubMed  CAS  Google Scholar 

  • Baxter DA, Bittner GD (1991): Synaptic plasticity at crayfish neuromuscular junctions: presynaptic inhibition. Synapse 7:244–251

    Article  PubMed  CAS  Google Scholar 

  • Bean BP (1989): Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153–156

    Article  PubMed  CAS  Google Scholar 

  • Bowery N (1989): GABAB receptors and their significance in mammalian pharmacology. Trends Pharm Sci 10:401–407

    Article  PubMed  CAS  Google Scholar 

  • Brock LG, Coombs JS, Eccles JC (1952): The recording of potentials from motoneurones with an intracellular electrode. J Physiol (Lond) 117:431–460

    PubMed  CAS  Google Scholar 

  • Brown AM, Birnbaumer L (1990): Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 52:197–213

    Article  PubMed  CAS  Google Scholar 

  • Byrne JH (1980): Identification of neurons contributing to presynaptic inhibition in Aplysia californica. Brain Res 199:235–239

    Article  PubMed  CAS  Google Scholar 

  • Charlton MP, Smith SJ, Zucker RS (1982): Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. J Physiol (Lond) 323:173–193

    PubMed  CAS  Google Scholar 

  • Clements JD, Forsythe ID, Redman SJ (1987): Presynaptic inhibition of synaptic potentials evoked in cat spinal motoneurones by impulses in single group la axons. J Physiol (Lond) 383:153–169

    PubMed  CAS  Google Scholar 

  • Cooper S, Creed RS (1927): More reflex effects of active muscular contraction. J Physiol (Lond) 64:199–214

    PubMed  CAS  Google Scholar 

  • Dale N, Kandel ER (1990): Facilitatory and inhibitory transmitters modulate spontaneous transmitter release at cultured Aplysia sensorimotor synapses. J Physiol (Lond) 421:203–222

    PubMed  CAS  Google Scholar 

  • De Camilli P, Jahn R (1990): Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645

    Article  PubMed  Google Scholar 

  • Delaney KR, Tank DW, Zucker RS (1991): Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction. J Neurosci 11:2631–2643

    PubMed  CAS  Google Scholar 

  • Dudel J, Kuffler SW (1961): Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol (Lond) 155:543–562

    PubMed  CAS  Google Scholar 

  • Dunlap K, Fischbach GD (1978): Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 276:837–839

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC (1961): The nature of central inhibition. Proc Roy Soc B 153:445–476

    Article  Google Scholar 

  • Eccles JC (1964): The Physiology of Synapses. New York: Springer-Verlag, Inc.

    Book  Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF (1962): Central pathways responsible for depolarization of primary afferent fibres. J Physiol (Lond) 161:237–257

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt R, Willis WD (1963): Pharmacological studies on presynaptic inhibition. J Physiol (Lond) 168:500–530

    PubMed  CAS  Google Scholar 

  • Elmslie KS, Zhou W, Jone SW (1990): LHRH and GTP-gamma-S modify calcium current activation in bullfrog sympathetic neurons. Neuron 5:75–80

    Article  PubMed  CAS  Google Scholar 

  • Forscher P, Oxford GS (1985): Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol 85:743–763

    Article  PubMed  CAS  Google Scholar 

  • Fox S, Krnjevic K, Morris ME, Puil E, Wierman R (1978): Action of baclofen on mammalian synaptic transmission. Neuroscience 3:495–515

    Article  PubMed  CAS  Google Scholar 

  • Frank K (1959): Basic mechanisms of synaptic transmission in the central nervous system. IRE Trans Med Electron ME-6:85–88

    Article  Google Scholar 

  • Frank K, Fuortes MGF (1957): Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed Proc 16:39–40

    Google Scholar 

  • Gage PW (1992): Activation and modulation of neuronal K+ channels by GABA. Trends in Neurosci 15:46–51

    Article  CAS  Google Scholar 

  • Gasser HS, Graham HT (1933): Potentials produced in the spinal cord by stimulation of dorsal roots. Am J Physiol 103:303–320

    Google Scholar 

  • Gerber U, Greene RW, Haas HL, Stevens DR (1989): Characterization of inhibition mediated by adenosine in the hippocampus of the rat in vitro. J Physiol (Lond) 417:567–578

    PubMed  CAS  Google Scholar 

  • Gingrich KJ, Baxter DA, Byrne JH (1988): Mathematical model of cellular mechanisms contributing to presynaptic facilitation. Brain Res Bull 21:513–520

    Article  PubMed  CAS  Google Scholar 

  • Grassi F, Lux HD (1989): Voltage-dependent GABA-induced modulation of calcium currents in sensory neurons. Neurosci Lett 105:113–119

    Article  PubMed  CAS  Google Scholar 

  • Hill DR, Bowery NG (1981): 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Gasser HS (1934a): Some properties of the cord potentials evoked by a single afferent volley. Am J Physiol 108:295–306

    Google Scholar 

  • Hughes J, Gasser HS (1934b): The response of the spinal cord to two afferent volleys. Am J Physiol 108:301–321

    Google Scholar 

  • Kalman D, O’Lague PH, Erxleben C, Armstrong DL (1988): Calcium-dependent inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells. J Gen Physiol 92:531–548

    Article  PubMed  CAS  Google Scholar 

  • Kalsner S, Westfall TC (1990): Presynaptic receptors and the question of autoregulation of neurotransmitter release. Ann NY Acad Sci 604

    Google Scholar 

  • Kasai H, Aosaki T (1989): Modulation of Ca-channel current by an adenosine analog mediated by a GTP-binding protein in chick sensory neurons. Pflugers Arch 414:145–149

    Article  PubMed  CAS  Google Scholar 

  • Kramer RH, Kaczmarek LK, Levitan ES (1991): Neuropeptide inhibition of voltage-gated calcium channels mediated by mobilization of intracellular calcium. Neuron 6:557–563

    Article  PubMed  CAS  Google Scholar 

  • Kretz R, Shapiro E, Kandel ER (1986a): Presynaptic inhibition produced by an identified presynaptic inhibitory neuron. I. Physiological mechanisms. J Neurophysiol 55:113–130

    PubMed  CAS  Google Scholar 

  • Kretz R, Shapiro E, Bailey CH, Chen M, Kandel ER (1986b): Presynaptic inhibition produced by an identified presynaptic inhibitory neuron. II. Presynaptic conductance changes caused by histamine. J Neurophysiol 55:131–146

    PubMed  CAS  Google Scholar 

  • Kuno M (1964): Mechanism of facilitation and depression of the excitatory synaptic potential in spinal motoneurones. J Physiol (Lond) 175:100–112

    PubMed  CAS  Google Scholar 

  • Legido A, Reichlin S, Dichter MA, Buchhalter J (1990): Expression of somatostatin and GABA immunoreactivity in cultures of rat hippocampus. Peptides 11:103–109

    Article  PubMed  CAS  Google Scholar 

  • Lester RAJ, Jahr CE (1990): Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron 4:741–749

    Article  PubMed  CAS  Google Scholar 

  • Liddell EGT, Sherrington CS (1925): Further observations on myotatic reflexes. Proc Roy Soc B 97:261–283

    Google Scholar 

  • Lipscombe D, Kongsamut S, Tsien RW (1989): α-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium channel gating. Nature 340:637–642

    Article  Google Scholar 

  • Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991): Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of transmitter release in squid giant synapse. J Physiol (Lond) 436:257–282

    PubMed  CAS  Google Scholar 

  • Man-Son-Hing H, Zoran MJ, Lukowiak K, Haydon PG (1989): A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels. Nature 341:237–239

    Article  PubMed  CAS  Google Scholar 

  • Marchetti C, Carbone E, Lux HD (1986): Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 406:104–111

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (1990): Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J 4:3291–3299

    PubMed  CAS  Google Scholar 

  • Nelson PG, Marshall KC, Pun RYK, Christian CN, Sheriff WH, MacDonald RL, Neale EA (1983): Synaptic interactions between mammalian central neurons in cell culture. II. Quantal analysis of EPSPs. J Neurophysiol 49:1442–1458

    PubMed  CAS  Google Scholar 

  • Nicoli RA (1988): The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551

    Article  Google Scholar 

  • Nicoli RA, Alger BE (1979): Presynaptic inhibition: transmitter and ionic mechanisms. Int Rev Neurobiol 21:217–258

    Article  Google Scholar 

  • Nicoli RA, Malenka RC, Kauer JA (1990): Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Phys Rev 70:513–565

    Google Scholar 

  • North RA (1989): Drug receptors and the inhibition of nerve cells. Br J Pharmacol 98:13–28

    PubMed  CAS  Google Scholar 

  • Peng Y-Y, Frank E (1989): Activation of GABAB receptors causes presynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J Neurosci 9:1502–1515

    PubMed  CAS  Google Scholar 

  • Peng Y-Y, Horn JP (1991): Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia. J Neurosci 11:85–95

    PubMed  CAS  Google Scholar 

  • Scholz KP, Geary LJ, Byrne JH (1988): Inositol 1,4,5-trisphosphate alters bursting pacemake activity in Aplysia neurons: voltage-clamp analysis of effects on calcium currents. J Neurophysiol 60:86–104

    PubMed  CAS  Google Scholar 

  • Scholz KP, Miller RJ (1992): Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Segev I (1990): Computer study of presynaptic inhibition controlling the spread of action potentials into axonal terminals. J Neurophysiol 63:987–998

    PubMed  CAS  Google Scholar 

  • Silinsky EM (1981): On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminals. Br J Pharmacol 73:413–429

    PubMed  CAS  Google Scholar 

  • Silinsky EM (1984): On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol (Lond) 346:243–256

    PubMed  CAS  Google Scholar 

  • Smith SJ, Augustine GJ (1988): Calcium ions, active zones and synaptic transmitter release. Trends in Neurosci 11:458–464

    Article  CAS  Google Scholar 

  • Soejima M, Noma A (1984): Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch 400:424–431

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu JY (1984): Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholesystokinin-immunoreactive material. J Neurosci 4:2590–2603

    PubMed  CAS  Google Scholar 

  • Stanley E, Cox C (1991): Calcium channels in the presynaptic nerve terminal of the chick ciliary ganglion giant synapse. Ann NY Acad Sci 635:70–79

    Article  PubMed  CAS  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989): Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Stjarne L, Msghina M, Stjarne E (1990): “Upstream” regulation of the release probability in sympathetic nerve varicosities. Neuroscience 36:571–587

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ, Redman SJ (1992): The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. J Physiol (Lond) 447:675–692

    PubMed  CAS  Google Scholar 

  • Takeuchi A, Takeuchi N (1966): A study of the inhibitory action of gamma-aminobutyric acid on neuromuscular transmission in the crayfish. J Physiol (Lond) 183:418–432

    PubMed  CAS  Google Scholar 

  • Ullrich S, Wollheim CB (1988): GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. J Biol Chem 263:8615–8620

    PubMed  CAS  Google Scholar 

  • VanDongen AMJ, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown A (1988): Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 242:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • Von Kugelgen I, Starke K (1991): Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharm Sci 12:319–323

    Article  Google Scholar 

  • Waziri R, Kandel ER, Frazier WT (1969): Organization of inhibition in abdominal ganglion of Aplysia. II. Posttetanic potentiation, heterosynaptic depression, and increments in frequency of inhibitory postsynaptic potentials. J Neurophysiol 32:509–519

    PubMed  CAS  Google Scholar 

  • Whim MD, Lloyd PE (1989): Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc Natl Acad Sci USA 86:9034–9038

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Boston

About this chapter

Cite this chapter

Scholz, K.P. (1993). Introductory Perspective. In: Dunwiddie, T.V., Lovinger, D.M. (eds) Presynaptic Receptors in the Mammalian Brain. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6825-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6825-0_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6827-4

  • Online ISBN: 978-1-4684-6825-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics