Virus-Mediated Genetic Treatment of Rodent Gliomas

  • E. Antonio Chiocca
  • Julie K. Andersen
  • Yoshiaki Takamiya
  • Robert L. Martuza
  • Xandra O. Breakefield


The most common primary central nervous system neoplasm in adults is the malignant glioma. Approximately 5,000 new cases are diagnosed annually in the United States. This tumor has proven to be extremely refractory to currently available therapeutic modalities. A combination of aggressive surgical excision, radiation therapy, and chemotherapy has increased the life expectancy of patients suffering from this illness by only a few months (Schoenberg, 1983; Salcman, 1985; Kornblith et al., 1985). Sometimes the aggressive pursuit of these therapeutic modalities results in considerable neurologic dysfunction.


Glioma Cell Herpes Simplex Virus Type Thymidine Kinase Primary Central Nervous System Neoplasm Ganciclovir Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen JK, Garber DA, Meaney CA, Breakefield XO (1992): Gene transfer into mammalian central nervous system using herpes virus vectors: extended expression of bacterial lacZ in neurons using the neuron-specific enolase promoter. Hum Gene Ther 3: 487–499Google Scholar
  2. Breakefield XO, DeLuca NA (1991): Herpes simplex virus for gene delivery to neurons. The New Biologist 3: 203–218PubMedGoogle Scholar
  3. Cai W, Schaffer PA (1989): Herpes simplex virus type 1ICPO plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 63: 4579–4589PubMedGoogle Scholar
  4. Cassel W, Murrary DR, Phillips H (1983): A phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer 52: 856–860PubMedCrossRefGoogle Scholar
  5. Cepko C (1988): Retroviral vectors and their applications in neurobiology. Neuron 1: 345–353PubMedCrossRefGoogle Scholar
  6. Chang T, Yee J-K, Yeargin T, Friedman T, Haas M (1992): Suppression of acute lymphoblastic leukemia by the human p53 gene. Cancer Res 52: 222–226Google Scholar
  7. Chiocca EA, Choi BB, Weizhong C, DeLuca NA, Schaffer PA, DiFiglia M, Breakefield XO, Martuza RL (1990): Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biologist 2: 739–746PubMedGoogle Scholar
  8. Clifford S, Schold JR, Gregory Carncross, Bullard DE (1985): Chemotherapy of primary brain tumors. In: Neurosurgery, New York: McGraw-Hill Co. pp 1143–1152Google Scholar
  9. Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM (1989): Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci USA 86: 4736–4740PubMedCrossRefGoogle Scholar
  10. Culver KW, Ram X, Waebridge S, Ishii H, Oldfield EH, Blaese RM (1992): In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552PubMedCrossRefGoogle Scholar
  11. Ezzeddine ZD, Martuza RL, Short MP, Platika D, Malick A, Choi B, Breakefield XO (1991): Selective killing of glioma cells in culture and in vivo following retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biologist 3: 1–7Google Scholar
  12. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P (1990): Interleukin-2 production by tumor cells by-passes T helper function in the generation of an antitumor response. Cell 60: 397–403PubMedCrossRefGoogle Scholar
  13. Freeman SM, Whartenby KA, Koeplin DS, et al. (1992): Tumor regression when a fraction of the tumor mass contains the HSV-TK gene. J Cell Biol 168: 47Google Scholar
  14. Geller AI (1991): A system, using neural cell lines, to characterize HSV-1 vectors containing genes which affect neuronal physiology, or neuronal promoters. J Neurosci Methods 36: 91–103PubMedCrossRefGoogle Scholar
  15. Geller AI, Breakefield XO (1988): A defective HSV-1 vector expresses E. coli beta-galactosidase in cultured rat peripheral neurons. Science 241: 1667–1669PubMedCrossRefGoogle Scholar
  16. Glorioso JC, Sternberg IR, Groins WF, Fink DJ (1992): Development of herpes simplex virus as a gene transfer vector for the central nervous system. In: Gene Transfer and Therapy in the Nervous System, Gage F, Christen Y eds. New York: Springer-Verlag, pp 133–145CrossRefGoogle Scholar
  17. Goldberg WJ, Laws ER, Bernstein JJ (1991): Individual C6 glioma cells migrate in adult rat brain after neural homografting. J Neuroscience 9: 427–437Google Scholar
  18. Hewitt HB, Blake ER, Walder AS (1976): A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumors of spontaneous origin. Br J Cancer 33: 241–259PubMedCrossRefGoogle Scholar
  19. Ho DY, Mocarski ES (1988): Beta-galactosidase as a market in the peripheral and neural tissues of the herpes simplex virus-infected mouse. Virol 167: 279–283CrossRefGoogle Scholar
  20. Hochberg FH, Pruitt A (1980): Assumptions in the radiotherapy of glioblastoma. Neurology 30: 907–911PubMedGoogle Scholar
  21. Huang J-S, Yee J-K, Shew J-Y, Chen P-L, Bookstein R, Friedmann T, Lee EY, Lee W-H (1988): Suppression of the neoplastic phenotype by replacement of the RB genetic human cancer cells. Science 242: 1563–1566PubMedCrossRefGoogle Scholar
  22. Huang Q, Vonsattel J-P, Schaffer PA, Martuza RL, Breakefield XO, DiFiglia M (1992): Introduction of a foreign gene (Escherichia coli lacZ) into rat neuostriatal neurons using herpes simplex virus mutants: A light and electron microscopic study. Exp Neurol 115: 303–316PubMedCrossRefGoogle Scholar
  23. Itaya T, Yamagiwa S, Okada S, Oikawa F, Kuzumaki N, Takeichi N, Hosokawa M, Kobayashi H (1987): Xenogenization of a mouse lung carcinoma (3LL) by transfection with an allogeneic class I major histocompatibility complex gene. Cancer Res 47: 3136–3140PubMedGoogle Scholar
  24. Johnson PA, Miyanohara A, Levine F, Cahill T, Friedmann T (1992): Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 66: 2952–2965PubMedGoogle Scholar
  25. Kaplitt M, Tjuvajev J, Berk J, Rabkin SD, Posner JB, Pfaff DW, Blasberg RG (1992): Treatment of W256 tumors in immunocompetent rats using herpes simplex virus mutants (Abstract). In: Gene Therapy, Anderson UF, Friedmann T, Mulligan R, eds New York: Cold Spring Harbor Labs., p 81Google Scholar
  26. Kornblith PL, Walker MD, Cassady RJ (1985): Neoplasms of the central nervous system. In: Principles and Practice of Oncology, Helmann S, Rosenberg SA, eds. Philadelphia: J.B. Lipincott Co., pp 1437–1511Google Scholar
  27. Kwong AD, Kruper JA, Frenkel N (1989): HSV virion host shutoff function. J Virol 62: 912–921Google Scholar
  28. Lipson KE, Chen ST, Koniecki J, Ku DH, Baserga R (1989): S-phase-specific regulation by deletion mutants of the human thymidine kinase promoter. Proc Natl Acad Sci USA 89: 6848–6852CrossRefGoogle Scholar
  29. Markert JM, Malick A, Coen DM, Martuza RL (1993): Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32: 597–603PubMedCrossRefGoogle Scholar
  30. Martuza RL, Malick A, Markert JM, Ruggner KL, Coen DM (1991): Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252: 854–856PubMedCrossRefGoogle Scholar
  31. Maxwell IH, Maxwell F, Globe LM (1986): Regulated expression of diphteria toxin A-chain gene transfected into human cells: a possible strategy for inducing cancer cell suicide. Can Res 46: 4660–4664Google Scholar
  32. Maxwell IH, Globe LM, Maxwell F (1991): Expression of the diptheria toxin A chain coding sequence under the control of promoters and enhancers from immunoglobulin genes as a means of directing toxicity to B-lymphoid cells. Cancer Res 51: 4299–4304PubMedGoogle Scholar
  33. Moolten FL (1986): Tumor chemosensitivity conferred by inserted thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46: 5276–5281PubMedGoogle Scholar
  34. Moolten FL (1990): Mosaicism induced by gene insertion as a means of improving chemotheraeutic selectivity. Critical Rev Immunol 10: 203–233Google Scholar
  35. Peat DS, Stanley MA (1986): Chromosome damage induced by herpes simplex virus type 1 in early infection. J Gen Virol 67: 2273–2277PubMedCrossRefGoogle Scholar
  36. Price J, Turner D, Cepko C (1987): Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84: 156–160PubMedCrossRefGoogle Scholar
  37. Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH (1993): In situ retroviralmediated gene transfer for the treatment of brain tumors in rats. Cancer Res 53: 83–88PubMedGoogle Scholar
  38. Read GS and Frenkel N (1983): Herpes simplex virus mutants defective in the virionassociated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate-early) viral polypeptides. J Virol 46: 498–512PubMedGoogle Scholar
  39. Roizman B, Batterson W (1985): Herpes viruses and their replication. In: Virology, Fields BN ed. New York: Raven Press, p 497–526Google Scholar
  40. Roizman B, Jenkins FJ (1985): Genetic engineering of novel genomies of large DNA viruses. Science 229: 1208–1214PubMedCrossRefGoogle Scholar
  41. Roizman B, Sears AE (1990): Herpes simplex viruses and their replication. In: Virology ( 2nd ed) Fields BN, Knipe DM eds. Raven Press, pp 1795–1842Google Scholar
  42. Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Paakko PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Jallat S, Pavirani A, Lecocq J-P, Crystal RG (1991): Adenovirus-mediated transfer of a recombinant alphal-antitrypsin gene to the lung epithelium in vivo. Science 252: 431–434PubMedCrossRefGoogle Scholar
  43. Salcman M (1985): Supratentorial gliomas. In: Neurosurgery, Wilkins RH, Rengachary SS, eds. New York: McGraw-Hill Book Co., pp 579–581Google Scholar
  44. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA (1991): Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO Journal 10: 3941–3950PubMedGoogle Scholar
  45. Schoenberg BS (1983): The epidemiology of nervous system tumors. In: Oncology of the Nervous System, Walker MD ed. Boston: Martinus NijhoffGoogle Scholar
  46. Shepard AA, Imbalzano AN, DeLuca NA (1989): Separation of primary structural components conferring autoregulation, transactivation, and DNA-binding properties to the herpes simplex virus transcriptional regulatory protein ICP4. J Virol 63: 3714–3728PubMedGoogle Scholar
  47. Shimohama S, Rosenberg MB, Fagan AM, Wolff JA, Short MP, Breakefield XO, Gage FH (1989): Grafting geneticially modified cells into the rat brain: Characteristics of E. coli ß-galactosidase as a reporter gene. Mol Brain Res 5:271– 278Google Scholar
  48. Short MP, Choi B, Lee J, Malick A, Breakefield XO, Martuza RL (1990): Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J Neurosci Res 27: 427–433PubMedCrossRefGoogle Scholar
  49. Spaet RR, Frankel N (1985): The herpes simplex virus amplicon: Analyses of cisacting replication functions. Proc Natl Acad Sci USA 82: 694–698CrossRefGoogle Scholar
  50. Stern S, Masafumi T, Herr W (1989): The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP 16. Nature 341: 624–630PubMedCrossRefGoogle Scholar
  51. Takamiya Y, Short MP, Ezzedine ZD, Moolten FL, Breakefield XO, Martuza RL (1992): Gene therapy of malignant brain tumors: A rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J Neuroscience Res 33: 493–503CrossRefGoogle Scholar
  52. Takamiya Y, Short MP, Moolten FL, Fleet C, Mineta T, Breakefield XO, Martuza RL (1993): An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurgery 79: 104–110CrossRefGoogle Scholar
  53. Taylor MW, Cordell B, Souhrada M, Prather S (1971): Viruses as an aid to cancer therapy: Regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proc Natl Acad Sci USA 68: 836–840.PubMedCrossRefGoogle Scholar
  54. Tepper RJ, Pattengale PK, Leder P (1989): Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57: 503–512PubMedCrossRefGoogle Scholar
  55. Trojan J, Johnson TR, Rudin SD, Ilan J, Tykocinski ML, Ilan J (1993): Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor IRNA. Science 259: 94–97PubMedCrossRefGoogle Scholar
  56. Turner DL and Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136PubMedCrossRefGoogle Scholar
  57. Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML (1992): Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: Toward a synthetic virus-like gene- transfer vehicle. Proc Natl Acad Sci USA 89: 7934–7938PubMedCrossRefGoogle Scholar
  58. Wheelock EF, Dingle JH (1964): Observations on the repeated administration of viruses to a patient with acute leukemia. New Eng J Med 271: 645–651PubMedCrossRefGoogle Scholar
  59. Yamada M, Shimizu K, Miyao Y, Hayakawa T, Ikenaka K, Nakahira K, Nakajima K, Kagawa T, Mikoshiba K (1992): Retrovirus-mediated gene transfer targeted to malignant glioma cells in murine brain. Japan J Cancer Res 83: 1244–1247CrossRefGoogle Scholar
  60. Yoshii Y, Maki Y, Tsuboi K, Tomono Y, Nakagawa K, Hoshino T (1986): Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors. J Neurosurg 65: 659–663PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • E. Antonio Chiocca
  • Julie K. Andersen
  • Yoshiaki Takamiya
  • Robert L. Martuza
  • Xandra O. Breakefield

There are no affiliations available

Personalised recommendations