Electrically-Induced DNA Transfer into Cells. Electrotransfection in Vivo

  • Sergei I. Sukharev
  • Alexander V. Titomirov
  • Vadim A. Klenchin


Electrotransfection, or transfection by electroporation (Neumann et al., 1982), is becoming more and more popular as a powerful tool for introduction of exogenous DNA into cells of virtually any origin (Potter et al., 1984, Fromm et al., 1985, Dower et al., 1988, Potter, 1988). In many cases, electroporation is the only method that works. Ultimately, it is because electrotransfection is to a great extent a physical rather than biological technique. In contrast to the traditional method of mammalian cell transformation by calcium phosphate-DNA coprecipitate (Graham and Van der Eb, 1973), which is efficient predominantly with fibroblastlike cells, practically all types of mammalian and other cells attempted are successfully transfected by electroporation (Potter, 1988). This is one of the reasons why electrotransfection is regarded as promising for human gene therapy.


Electrical Breakdown Lucifer Yellow Pore Expansion Pore Edge SV40 Early Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979): Electric breakdown of bilayer lipid membrane. I. The main experimental facts and their qualitative discussions. Bioelectrochem Bioenerg 6: 37–52CrossRefGoogle Scholar
  2. An G, Hidaka K, Siminovich L (1982): Expression of bacterial β-galactosidase in animal cells. Mol Cell Biol 2: 1628–1632PubMedGoogle Scholar
  3. Andreason GL, Evans GA (1989): Optimization of electro poration for transfection of mammalian cells. Anal Biochem 180: 269–275PubMedCrossRefGoogle Scholar
  4. Auer D, Brander G, Bodemer W (1976): Dielectric breakdown of the red blood cell membrane and uptake of SV40 DNA and mammalian RNA. Naturwissenschaften 63: 391–394PubMedCrossRefGoogle Scholar
  5. Bahnson AB, Boggs SS (1990): Addition of serum to electroporated cells enhances survival and transfection efficiency. Biochem Biophys Res Comtnun 171: 752–757CrossRefGoogle Scholar
  6. Belyaev NV, Budker VG, Gorokhova OE, Sokolov AV (1988): Mg2+ dependent interaction of DNA with eukaryotic cells. Mol Biologiya 22: 1667–1672Google Scholar
  7. Benvenisty N, Reshef L (1986): Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci USA 83: 9551–9555PubMedCrossRefGoogle Scholar
  8. Benz R, Beckers F, Zimmermann U (1979): Reversible electrocal breakdown of lipid bilayer membranes: A charge-pulse relaxation study. J Membrane Biol 48: 181–204CrossRefGoogle Scholar
  9. Benz R, Zimmermann U (1981): The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta 640: 169–178PubMedCrossRefGoogle Scholar
  10. Berglund DL, Starkey JR (1991): Introduction of antibody into viable cells using electroporation. Cytometry 12: 64–67PubMedCrossRefGoogle Scholar
  11. Bertling W, Hunger-Bertling K, Cline MJ (1987): Intranuclear uptake and persistence of biologically active DNA after electroporation of mammalian cells. J Biochem Biophys Methods 14: 223–232PubMedCrossRefGoogle Scholar
  12. Brockmann WW (1978): Transformation of BALB/c-3T3 cells by tsA mutants of simian virus 40: Temperature sensitivity of the transformed phenotype and retransformation by wild-type virus. J Virol 25: 860–870Google Scholar
  13. Bryant G, Wolfe J (1987): Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J Membrane Biol 96: 129–139CrossRefGoogle Scholar
  14. Cantor CR, Schimmel (1980): Biophysical Chemistry. Vol. III. San Francisco: W. H. Freeman and CompanyGoogle Scholar
  15. Chakrabarti R, Wylie DE, Schuster SM (1989): Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem 264: 15494–15500PubMedGoogle Scholar
  16. Chang DC, Reese TS (1990): Changes in membrane structure induced by electroporation as revealed by rapid-freesing electron microscopy. Biophys J 58: 1–12PubMedCrossRefGoogle Scholar
  17. de Chasseval R, de Villartay J-P (1992): High level transient gene expression in human lymphoid cells by SV40 large T antigen boost. Nucl Acid Res 20: 245–250CrossRefGoogle Scholar
  18. Chernomordik LV, Sukharev SI, Abidor IG, Chizmadzhev YA (1983): Break-down of lipid bilayer membranes in an electric field. Biochim Biophys Acta 640: 169–178Google Scholar
  19. Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev YA (1987): The electrical breakdown of cell and lipid membranes: The similarity of phenomenologies. Biochim Biophys Acta 902: 360–373PubMedCrossRefGoogle Scholar
  20. Chernomordik LV, Chizmadzhev YA (1989): Electrical breakdown of lipid bilayer membranes. Phenomenology and mechanism. In: Electroporation and Electrofusion in Cell biology, Neumann E, Sowers AE, Jordan CA, eds. New York: Plenum PressGoogle Scholar
  21. Chernomordik LV, Sokolov AV, Budker VG (1990): Electrostimulated uptake of DNA by liposomes. Biochim Biophys Acta 1024: 179–183PubMedCrossRefGoogle Scholar
  22. Chernomordik LV (1992): Electropores in lipid bilayers and cell membranes. In: Guide to Electroporation and Electrofusion, Chang DC, Chassy BM, Saunders JA, Sowers AE, eds. San Diego: Academic PressGoogle Scholar
  23. Cole KS (1972): Membranes, Ions and Impulses. Berkeley: University of California Press.Google Scholar
  24. Deuticke B, Schwister K (1989): Leaks induced by electrical breakdown in the erythrocyte membrane. In: Electroporation and Electrofusion in Cell Biology, Neumann E, Sowers AE, Jordan CA, eds. New York: Plenum PressGoogle Scholar
  25. Dimitrov DS, Sowers AE (1990): Membrane electroporation — fast molecular exchange by electroosmosis. Biochim Biophys Acta 1022: 381–392PubMedCrossRefGoogle Scholar
  26. Dower WJ, Miller JF, Ragsdale CW (1988): High efficiency transformation of E. coli by high voltage electroporation. Nucl Acids Res 16: 6127–6145PubMedCrossRefGoogle Scholar
  27. Dressler V, Schwister K, Haest CVM, Deuticke B (1983): Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids. Biochim Biophys Acta 732: 304–307PubMedCrossRefGoogle Scholar
  28. Finaz C, Lefevre A, Teissie J (1984): Electrofusion: A new, highly efficient technique for generating somatic cell hybrids. Exp Cell Res 150: 477–482PubMedCrossRefGoogle Scholar
  29. Fountain JW, Lockwood WK, Collins FS (1988): Transfection of primary human fibroblasts by electroporation. Gene 68: 167–172PubMedCrossRefGoogle Scholar
  30. Fromm ME, Taylor LP, Walbot V (1985): Expression of genes transferred into monocot and dicot plants by electroporation. Proc Natl Acad Sci USA 82: 5824PubMedCrossRefGoogle Scholar
  31. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988): Reversible electrical breakdown of lipid bilayers: Formation and evolution of pores. Biochim Biophys Acta 940: 275–287PubMedCrossRefGoogle Scholar
  32. Graham F, van der Eb A (1973): A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467PubMedCrossRefGoogle Scholar
  33. Herzog R, Muller-Wellensiek A, Voelter W (1986): Usefulness of Ficoll in electric field-mediated cell fusion. Life Sci 39: 2279–2288PubMedCrossRefGoogle Scholar
  34. van der Hoff MJ, Moorman AF, Lamers WH (1992): Electroporation in ‘intracellular’ buffer increases cell survival. Nucl Acid Res 20: 2902CrossRefGoogle Scholar
  35. Kinosita K, Tsong TY (1977a): Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268: 438–441PubMedCrossRefGoogle Scholar
  36. Kinosita K, Tsong TY (1977b): Voltage induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471: 227–242PubMedCrossRefGoogle Scholar
  37. Kinosita K, Tsong TY (1979): Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554: 479–497PubMedCrossRefGoogle Scholar
  38. Kinosita K, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988): Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53: 1015–1019PubMedCrossRefGoogle Scholar
  39. Kaneda Y, Iwai K, Uchida T (1989): Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 243: 375–378PubMedCrossRefGoogle Scholar
  40. Keating A, Toneguzzo F (1990): Gene transfer by electroporation: a model for gene therapy. Progress in Clinical and Biological Research 333: 491–498PubMedGoogle Scholar
  41. Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzhev YA(1991): Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J 60: 804–811Google Scholar
  42. Knight DE, Scrutton MC (1986): Gaining access to the cytosol: The technique and some applications of electropermeabilization. Biochem J 234: 497–506PubMedGoogle Scholar
  43. Knutson JC, Yee D (1987): Electroporation: parameters affecting transfer of DNA into mammalian cells. Anal Biochem 164: 44–52PubMedCrossRefGoogle Scholar
  44. Kubiniec RT, Liang H, Hui SW (1990): Effects of pulse length and pulse strength on transfection by electroporation. Biotechniques 8: 16–20PubMedGoogle Scholar
  45. Laurent CT, Granath KA (1967): Fractionation of dextran and ficoll by chromatography on Sephadex G-200. Biochim Biophys Acta 136: 191–198PubMedCrossRefGoogle Scholar
  46. Leikin SL, Glaser RW, Chernomordik LV (1986): Mechanism of pore formation under electrical breakdown of membranes. Biol Membr 3: 944–951Google Scholar
  47. Machy P, Lewis F, McMillan L, Jonak ZL (1988): Gene transfer from targeted liposomes to specific lymphoid cells by electroporation. Proc Natl Acad Sci USA 85: 8027–8031PubMedCrossRefGoogle Scholar
  48. Mehrle W, Zimmermann U, Hampp R (1985): Evidence for asymmetrical uptake of fluorescent dyes through electropermeabilized membranes of Avena meso- phyll protoplasts. FEBS Lett 185: 89–94CrossRefGoogle Scholar
  49. Neumann E, Schafer-Rider M, Wang Y, Hofschneider PH (1982): Gene transfer to mouse lyoma cells by electroporation in high electric fields. EMBO J 1: 841–845PubMedGoogle Scholar
  50. Neumann E (1989): The relaxation hysteresis of membrane electropration In: Electroporation and Electrofusion in Cell Biology, Neumann E, Sowers AE, Jordan CA, eds. New York: Plenum PressGoogle Scholar
  51. Nicolau C, Le Pape A, Soriano P, Fargette F, Juhel M-F (1983): In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci USA 80: 1068–1072PubMedCrossRefGoogle Scholar
  52. Pastushenko, VF, Chizmadzhev YA, Arakelyan VB (1979): Electric breakdown of bilayer lipid membranes, n. Calculation of the membrane lifetime in the steady- state diffusion approximation. Bioelectrochem Bioenerg 6: 53–63CrossRefGoogle Scholar
  53. Pastushenko VP, Chizmadzhev YA (1992): Energetic estimations of the deformation of the translocated DNA and cell membrane in the course of electrotransformation. Biol Mem 6: 287–300Google Scholar
  54. Potter H, Weir L, Leder P (1984): Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81: 7161–7165PubMedCrossRefGoogle Scholar
  55. Potter H (1988): Electroporation in biology: Methods, applications, and instumentation. Anal Biochem 174: 361–373PubMedCrossRefGoogle Scholar
  56. Potter H (1989): Molecular genetic applications of electroporation In: Electroporation and Electrofusion in Cell Biology, Neumann E, Sowers AE, Jordan CA, eds. New York: Plenum PressGoogle Scholar
  57. Potter H, Cooke SWF (1992): Gene transfer into adherent cells growing on microbeads. In: Guide to Electroporation and Electrofusion, Chang DC, Chassy BM, Saunders JA, Sowers AE, eds. San Diego: Academic PressGoogle Scholar
  58. Powell KT, Morgenthaler AW, Weaver JC (1989): Tissue electro poration. Observation of reversible electrical breakdown in viable frog skin. Biophys J 56: 1163–1171PubMedCrossRefGoogle Scholar
  59. Presse F, Quillet A, Mir L, Marchiol-Fournigault, Feunteun J, Fradelizi D (1988): An improved electrotransfection method using square shaped electric impulsions. Biochem Biophys Res Commun 151: 982–990PubMedCrossRefGoogle Scholar
  60. Reid LH, Smithies O (1992): Gene targeting and electroporation. In: Guide to Electroporation and Electrofusion, Chang DC, Chassy BM, Saunders JA, Sowers AE, eds. San Diego: Academic PressGoogle Scholar
  61. Ruley HE (1983): Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606PubMedCrossRefGoogle Scholar
  62. Schwister K, Deuticke, B (1985): Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim Biophys Acta 816: 332–348PubMedCrossRefGoogle Scholar
  63. Sczakiel G, Diffinger R, Pawlita M (1989): Testing for electrotransfection parameters by use of the fluorescent dye Lucifer Yellow CH. Anal Biochem 181: 309–313PubMedCrossRefGoogle Scholar
  64. Southern PJ, Berg P (1982): Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1: 327–341PubMedGoogle Scholar
  65. Sowers AE, Lieber MR (1986): Electropores in individual erythrocyte ghosts: diameters, lifetimes, numbers and locations. FEBS Lett 205: 179–184PubMedCrossRefGoogle Scholar
  66. Stellwagen NC (1987): Electrophoresis of DNA in agarose and polyacrylamide gels. Adv Electrophoresis 1: 179–228Google Scholar
  67. Stopper H, Jones H, Zimmermann U (1987): Large-scale transfection of mouse L-cells by electropermeabilization. Biochim Biophys Acta 900: 38–44PubMedCrossRefGoogle Scholar
  68. Sugar IP, Neumann E, (1984): Stochastic model for electric field-induced membrane pores — electropration. Biophys Chem 19: 211–225PubMedCrossRefGoogle Scholar
  69. Sukharev SI, Popov SV, Chernomordik LV, Abidor IG (1985): A patch-clamp study of electrical breakdown of cell membranes. Biol Membr 2: 77–86Google Scholar
  70. Sukharev SI, Bandrina IN, Barbul AI, Fedorova LI, Abidor IG, Zelenin AV (1990): Electrofusion of fibroblasts on the porous membrane. Biochim Biophys Acta 1034: 125–131PubMedCrossRefGoogle Scholar
  71. Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YA(1992): Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63: 1320–1327Google Scholar
  72. Tekle E, Astumian RD, Chock PB (1991): Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc Natl Acad Sci USA 88: 4230–4234PubMedCrossRefGoogle Scholar
  73. Titomirov AV, Sukharev S, Kistanova E (1991): In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088: 131–134PubMedGoogle Scholar
  74. Toneguzzo F, Hayday AC, Keating A (1986): Electric field-mediated gene transfer: transient and stable gene expression in human and mouse lymphoid cells. Mol Cell Biol 6: 703–706PubMedGoogle Scholar
  75. Toneguzzo F, Keating A (1986): Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated gene transfer. Proc Natl Acad Sci USA 83: 3496–3499PubMedCrossRefGoogle Scholar
  76. Toneguzzo F, Keating A, Lilly S, McDonald K (1988): Electric field-mediated gene transfer: Chatacterization of DNA transfer and patterns of integration in lymphoid cells. Nucleic Acid Res 16: 5515–5532PubMedCrossRefGoogle Scholar
  77. Tsong TY (1989): Electroporation of cell membranes. Mechanisms and applications. In: Electroporation and Electrofusion in Cell Biology, Neumann E, Sowers AE, Jordan CA, eds. New York: Plenum PressGoogle Scholar
  78. Tsong TY (1992): Time sequence of molecular events in electroporation. In: Guide to Electroporation and Electrofusion, Chang DC, Chassy BM, Saunders JA, Sowers AE, eds. San Diego: Academic PressGoogle Scholar
  79. Weaver JC, Barnett A (1992): Progress toward a theoretical model for electroporation mechanism: Membrane electrical behavior and molecular transport. In: Guide to Electroporation and Electrofusion, Chang DC, Chassy BM, Saunders JA, Sowers AE, eds. San Diego: Academic PressGoogle Scholar
  80. Wintrebourne DJ, Thomas S, Hermon-Taylor J, Hussain I, Johnstone AP (1988): Electric shock-mediated transfection of cells. Characterization and optimization of electrical parameters. Biochem J 251: 427–434Google Scholar
  81. Wolff, JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Feigner PL (1990): Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468PubMedCrossRefGoogle Scholar
  82. Wong TK, Neumann E (1982): Electric field mediated gene transfer. Biochim Biophys Res Commun 107: 584–587CrossRefGoogle Scholar
  83. Xie T-D, Sun L, Tsong TY (1990): Study of mechanisms of electric field-induced DNA transfection I. DNA entry by surface binding and diffusion through membrane pores. Biophys J 58: 13–19PubMedCrossRefGoogle Scholar
  84. Zimmermann U, Pilwat G, Beckers F, Riemann F (1976): Effects of external electric fields on cell membranes. Bioeolectrochem Bioenerg 3: 58–83CrossRefGoogle Scholar
  85. Zimmermann U (1982): Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 694: 227–277PubMedGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • Sergei I. Sukharev
  • Alexander V. Titomirov
  • Vadim A. Klenchin

There are no affiliations available

Personalised recommendations