Advertisement

From the Last Skirmishes around the Neuron Theory to the Functional Anatomy of Neuron Networks

  • John Szentágothai

Abstract

When I was “awakening” on the scene of neurobiology in the early thirties, the neuron concept was once again under heavy barrage from the “reticularists,” then led by Jan Boeke at Utrecht and by Philipp Stöhr, Jr., at Bonn. My first impressions about this nineteenth-century type of scientific Streitschrift (debate) derived from the hopeless struggle of my revered teacher in anatomy, Michael von Lenhossék, to refute the claims of Boeke (1926) about the existence of a “periterminal network” in the motor endplate, which would allegedly prove the continuity between neural and muscle substance. Von Lenhossék had too critical a mind not to realize that it was impossible then to beat Boeke with his own weapons, the sole use of neurofibrillar impregnation methods: so he refrained from publishing anything about the results of his last researches. However, I became “imprinted” with a fundamental distrust of the “histological picture” as a source of information about things that were not obvious in routine preparations and not visible with the mediocre resolving power of available optic systems.

Keywords

Purkinje Cell Neuron Network Cerebellar Cortex Mossy Fiber Climbing Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boeke, J. (1926): Die Beziehungen der Nervenfasern zu den Bindegewebselementen und Tastzellen. Das periterminale Netzwerk der motorischen und sesibeln Nervenendigungen, seine morphologische und physiologische Bedeutung, Entwicklung und Regeneration. Z. Mikrosk. Anat. Forsch, 4:448–509.Google Scholar
  2. Boeke, J. (1933a): Innervationsstudien. III. Die Nervenversorgung des M. ciliaris und des M. sphincter iridis bei Säugern und Vögeln. Ein Beispiel plexiformer Innervation der Muskelfasern. Z. Mikrosk. Anat. Forsch.33:233–275.Google Scholar
  3. Boeke, J. (1933b): Innervationsstudien. IV. Die efferente Gefässinnervation und der sympathische Plexus im Bindegewebe. Z. Mikrosk. Anat. Forsch.33:276–328.Google Scholar
  4. Boeke, J. (1939): Innervationsstudien. X. Sympathischer Grundplexus und Bindegewebsstrukturen (Reticulinfasern des Bindegewebes und des Sarkolemmas). Z. Mikrosk. Anat. Forsch.46:488–519.Google Scholar
  5. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A. (1972): The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res.37:21–51.PubMedCrossRefGoogle Scholar
  6. Eccles, J. G. (1953): The Neurophysiological Basis of Mind. The Principles of Neurophysiology.Oxford: Clarendon Press.Google Scholar
  7. Eccles, J. C., Faber, D. S., Murphy, J. T., Sabah, N. H., and Táboríková, H. (1971): Investigations oh integration of mossy fiber inputs to Purkinje cells in the anterior lobe. Exp. Brain Res.13:54–77.CrossRefGoogle Scholar
  8. Eccles, J. C., Fatt, P., and Koketsu, K. (1954): Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol.126:524–562.PubMedGoogle Scholar
  9. Eccles, J. C., Fatt, P., Landgren, S., and Winsbury, G.J. (1954): Spinal cord potentials generated by volleys in the large muscle afferents. J. Physiol.125:590–606.PubMedGoogle Scholar
  10. Eccles, J. C., Ito, M., and Szentágothai, J. (1967): The Cerebellum as a Neuronal Machine.New York: Springer-Verlag.Google Scholar
  11. Fink, R. P., and Heimer, L. (1967): Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res.4:369–374.PubMedCrossRefGoogle Scholar
  12. Foerster, O., Gagel, O., and Sheehan, D. (1933): Veränderungen an den Endösen im Rückenmark des Affen nach Hinterwurzeldurchschneidung. Z. Anat. Entwicklungsgesch.101:553–565.CrossRefGoogle Scholar
  13. Fox, C. A., and Barnard, J. W. (1957): A quantitative study of the Purkinje cell dendritic branch-lets and their relationship to afferent fibres. J. Anat.91:299–313.PubMedGoogle Scholar
  14. Fulton, J. F. (1938): Physiology of the Nervous System.New York: Oxford University Press.Google Scholar
  15. Glees, P. (1946): Terminal degeneration within the central nervous system as studied by a new silver method. J. Neuropathol. Exp. Neurol.5:54–59.PubMedCrossRefGoogle Scholar
  16. Hoff, E. C. (1932): Central nerve terminals in the mammalian spinal cord and their examination by experimental degeneration. Proc. R. Soc.111:175–188.CrossRefGoogle Scholar
  17. Hoff, E. C., and Hoff, H. E. (1934): Spinal terminations of the projection fibres from the motor cortex of primates. Brain 57:454–474.CrossRefGoogle Scholar
  18. Högyes, A. (1880): Az akaratlan együttjáró (associait) szemmozgások idegmechanizmusáról [On the nervous mechanism of the involuntary associated movement of the eyes]. Orv. Hetil.23:17–29.Google Scholar
  19. Horsley, V., and Clarke, R. H. (1908): The structure and functions of the cerebellum examined by a new method. Brain 31:45–124.CrossRefGoogle Scholar
  20. Ito, M. (1973): The vestibulocerebellar relationships: Vestibulo-ocular reflex arc and flocculus. In: Handbook of Sensory Physiology.Vol. 6. Vestibular System.Kornhuber, H. H., ed. New York: Springer-Verlag.Google Scholar
  21. Katchalsky, A. K., Rowland, V., and Blumenthal, R. (1974): Dynamic patterns of brain cell assemblies. Neurosci. Res. Program Bull.12:1–187.Google Scholar
  22. Lasek, R., Joseph, B. S., and Whitlock, D. G. (1968): Evaluation of a radioautographic neuro-anatomical tracing method. Brain Res.8:319–336.PubMedCrossRefGoogle Scholar
  23. Lawrentjew, B. J. (1934): Experimentell-morphologische Studien liber den feineren Bau des autonomen Nervensystems. IV. Weitere Untersuchungen über die Degeneration und Regeneration der Synapsen. Z. Mikrosk. Anat. Forsch.35:71–118.Google Scholar
  24. Llinás, R., Precht, W., and Clarke, M. (1971): Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res.13:408–431.PubMedCrossRefGoogle Scholar
  25. Lorente de Nó, R. (1933): Vestibulo-ocular reflex arc. Arch. Neurol. Psychiatr.30:245–291.Google Scholar
  26. Miskolczy, D. (1931): Über die Endigungsweise der spinocerebellaren Bahnen. Z. Anat. Entwick-lungsgesch.96:537–542.CrossRefGoogle Scholar
  27. Nauta, W. J. H., and Gygax, P. A. (1954): Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Technol.29:91–93.PubMedGoogle Scholar
  28. Palkovits, M., Magyar, P., and Szentágothai, J. (1971a): Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Res.32:1–13.PubMedCrossRefGoogle Scholar
  29. Palkovits, M., Magyar, P., and Szentágothai, J. (1971b): Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res.32:15–30.PubMedCrossRefGoogle Scholar
  30. Palkovits, M., Magyar, P., and Szentágothai, J. (1971c): Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res.34:1–18.PubMedCrossRefGoogle Scholar
  31. Palkovits, M., Magyar, P., and Szentágothai, J. (1972): Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-Purkinje cell numerical transfer. Brain Res.45:15–29.PubMedCrossRefGoogle Scholar
  32. Pellionisz, A., and Szentágothai, J. (1973): Dynamic single unit simulation of a realistic cerebellar network model. Brain Res.49:83–99.PubMedCrossRefGoogle Scholar
  33. Pellionisz, A., and Szentágothai, J. (1974): Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems. Brain Res.68:19–40.PubMedCrossRefGoogle Scholar
  34. Phalen, G. S., and Davenport, H. A. (1937): Pericellular endbulbs in the central nervous system of vertebrates. J. Comp. Neurol.68:67–81.CrossRefGoogle Scholar
  35. Rasdolsky, J. (1923): Über die Endigung der extraspinalen Bewegungssysteme im Rückenmark. Z. Gesamte Neurol. Psychiatr.86:361–374.CrossRefGoogle Scholar
  36. Rasdolsky, J. (1925): Beiträge zur Architektur der grauen Substanz des Rückenmarks (Unter Benutzung einer neuen Methode der Färbung der Nervenfasernkollateralen). Virchows Arch. (Pathol. Anat.) 257:356–363.CrossRefGoogle Scholar
  37. Scharrer, E., and Scharrer, B. (1937): Über Drüsen-Nervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol. Rev.12:185–216.CrossRefGoogle Scholar
  38. Scharrer, E., and Scharrer, B. (1940): Secretory cells within the hypothalamus. Res. Publ. Assoc. Res. Nerv. Ment. Dis.20:170–194.Google Scholar
  39. Scheibel, M. E., and Scheibel, A. B. (1954): Observations on the intracortical relations of the climbing fibers of the cerebellum. A Golgi study. J. Comp. Neurol.101:733–763.PubMedCrossRefGoogle Scholar
  40. Scheibel, M. E., and Scheibel, A. B. (1955): The inferior olive. A Golgi study. J. Comp. Neurol.102:77–131.PubMedCrossRefGoogle Scholar
  41. Scheibel, M. E., and Scheibel, A. B. (1958): Structural substrates for integrative patterns in the brain stem reticular core. In: Reticular Formation of the Brain.Jasper, H. H., Proctor, L. D., Knighton, R. S., Noshay, W. C., and Costello, R. T., eds. Boston: Little, Brown, pp. 31–55.Google Scholar
  42. Scheibel, M. E., and Scheibel, A. B. (1968): Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res.9:32–58.PubMedCrossRefGoogle Scholar
  43. Schimert, J. (1936a): Untersuchungen über den Ursprung und die Endausbreitung der Nerven der Iris. Z. Zellforsch. Mikrosk. Anat.25:247–258.CrossRefGoogle Scholar
  44. Schimert, J. (1936b): Der Nervus intermedius und das Ganglion geniculi nervi facialis. Z. Mikrosk. Anat. Forsch.39:35–44.Google Scholar
  45. Schimert, J. (1937): Die Nervenversorgung des Myokards. Z. Zellforsch. Mikrosk. Anat.27:246–266.CrossRefGoogle Scholar
  46. Schimert, J. (1937–1938): Discussion of paper by J. Boeke, Dritte Wissenschaftliche Sitzung. Verh. Anat. Ges.45–46:158–159.Google Scholar
  47. Schimert, J. (1938a): Die Endigungsweise des Tractus vestibulospinalis. Z. Anat. Entwicklungsgesch.108:761–767.CrossRefGoogle Scholar
  48. Schimert, J. (1938b): Die “Syncytielle Natur” des vegetativen Nervensystems. Z. Mikrosk. Anat. Forsch.44:85–118.Google Scholar
  49. Schimert, J. (1939): Das Verhalten der Hinterwurzelkollateralen im Rückenmark. Z. Anat. Entwicklungsgesch.109:665–687.CrossRefGoogle Scholar
  50. Stöhr, P., Jr. (1935): Beobachtungen und Bemerkungen über die Endausbreitung des vegetativen Nervensystems. Z. Anat. Entwicklungsgesch.104:133–158.CrossRefGoogle Scholar
  51. Stöhr, P., Jr. (1939): Über “Nebenzellen” und deren Innervation in Ganglien des vegetativen Nervensystems, zugleich ein Beitrag zur Synapsenfrage. Z. Zellforsch. Mikrosk. Anat.26:569–612.CrossRefGoogle Scholar
  52. Szentágothai, J. (1942): Die innere Gliederung des Oculomotoriuskernes. Arch. Psychiatr.115:127–135.CrossRefGoogle Scholar
  53. Szentágothai, J. (1943): Die zentrale Innervation der Augenbewegungen. Arch. Psychiatr.116:721–760.CrossRefGoogle Scholar
  54. Szentágothai, J. (1948a): The representation of facial and scalp muscles in the facial nucleus. J. Comp. Neurol.88:207–220.PubMedCrossRefGoogle Scholar
  55. Szentágothai, J. (1948b): Anatomical considerations of monosynaptic reflex arcs. J. Neurophysiol.11:445–454.PubMedGoogle Scholar
  56. Szentágothai, J. (1949): Functional representation in the motor trigeminal nucleus. J. Comp Neurol.90:111–120.PubMedCrossRefGoogle Scholar
  57. Szentágothai, J. (1950a): The elementary vestibulo-ocular reflex arc. J. Neurophysiol.13:395–407.PubMedGoogle Scholar
  58. Szentágothai, J. (1950b): Recherches expérimentales sur les vois oculogyres. Sem. Hop. Paris 26: 2989–2995.PubMedGoogle Scholar
  59. Szentágothai, J. (1951): Short propriospinal neurons and intrinsic connections of the spinal gray matter. Acta Morphol. Acad. Sci. Hung.1:81–94.Google Scholar
  60. Szentágothai, J. (1952): Die Rolle der einzelnen Labyrinthrezeptoren bei der Orientation von Augen und Kopf im Raume.Budapest: Akadémiai Kiadó.Google Scholar
  61. Szentágothai, J. (1958): The anatomical basis of synaptic transmission of excitation and inhibition in motoneurons. Acta Morphol. Acad. Sci. Hung.8:287–309.Google Scholar
  62. Szentágothai, J. (1961): Anatomical aspects of inhibitory pathways and synapses. In: Nervous Inhibition (Proceedings of the Second Friday Harbor Symposium). Florey, E., ed. Oxford: Pergamon Press, pp. 32–46.Google Scholar
  63. Szentágothai, J. (1963): Ujabb adatok a synapsis funkcionális anatómiájához [New data on the functional anatomy of synapses]. Magy. Tudom. Akad. Biol. Orv. Tudom. Osztal. Közl.6:217–227.Google Scholar
  64. Szentágothai, J. (1965): The use of degeneration methods in the investigation of short neuronal connexions. Prog. Brain Res.14:1–32.PubMedCrossRefGoogle Scholar
  65. Szentágothai, J. (1967a): The anatomy of complex integrative units in the nervous system. In: Recent Developments of Neurobiology in Hungary.Vol. I. Results in Neuroanatomy, Neurochemistry, Neuropharmacology and Neurophysiology.Lissák, K., ed. Budapest: Akadémiai Kiadó, pp. 9–45.Google Scholar
  66. Szentágothai, J. (1967b): Synaptic architecture of the spinal motoneuron pool. Electroencephalogr. Clin. Neurophysiol.Suppl.25:4–19.Google Scholar
  67. Szentágothai, J. (1969): Architecture of the cerebral cortex. In: Basic Mechanisms of the Epilepsies.Jasper, H. H., Ward, A. A., Jr., and Pope, A., eds. Boston: Little, Brown, pp. 13–28.Google Scholar
  68. Szentágothai, J. (1970): Les circuits neuronaux de l’écorce cérébrale. Bull. Acad. R. Med. Belg.10:475–492.PubMedGoogle Scholar
  69. Szentágothai, J. (1971): Some geometrical aspects of the neocortical neuropil. Acta Biol. Acad. Sci. Hung.22:107–124.PubMedCrossRefGoogle Scholar
  70. Szentágothai, J. (1972a): The basic neuronal circuit of the neocortex. In:Synchronization of EEG Activity in Epilepsies (Symposium Organized by the Austrian Academy of Sciences, Vienna, September 12–13, 1971). Petsche, H., and Brazier, M. A. B., eds. Vienna: Springer-Verlag, pp. 9–24.CrossRefGoogle Scholar
  71. Szentágothai, J. (1972b): Lateral geniculate body structure and eye movement. Bibl. Ophthalmol.82:178–188.PubMedGoogle Scholar
  72. Szentágothai, J. (1973a): Neuronal and synaptic architecture of the lateral geniculate nucleus. In: Handbook of Sensory Physiology.Vol. VII/3B. Central Processing of Visual Information.Jung, R., ed. Berlin: Springer-Verlag, pp. 141–176.Google Scholar
  73. Szentágothai, J. (1973b): Synaptology of the visual cortex. In: Handbook of Sensory Physiology.Vol. VII/3B. Central Processing of Visual Information.Jung, R., ed. Berlin: Springer-Verlag, pp. 269–324.Google Scholar
  74. Szentágothai-Schimert, J. (1941): Die Endigungsweise der absteigenden Rückenmarksbahnen. Z. Anat. Entwicklungsgesch.111:322–330.CrossRefGoogle Scholar
  75. Szentágothai, J., and Albert, A. (1955): The synaptology of Clarke’s column. Acta Morphol. Acad. Sci. Hung.5:43–51.PubMedGoogle Scholar
  76. Szentágothai, J., and Arbib, M. A. (1974): Conceptual models of neural organization. Neurosci. Res. Program Bull.12:305–510.PubMedGoogle Scholar
  77. Szentágothai, J., Flerkó, B., Mess, B., and Halász, B. (1962): Hypothalamic Control of the Anterior Pituitary. An Experimental-Morphological Study.Budapest: Akadémiai Kiadó (2nd ed., 1965; 3rd ed., 1968).Google Scholar
  78. Szentágothai, J., and Rajkovits, K. (1959): Über den Ursprung der Kletterfasern des Kleinhirns. Z. Anat. Entwicklungsgesch.121:130–141.CrossRefGoogle Scholar
  79. Szentágothai, J., and Réthelyi, M. (1973): Cyto- and neuropil architecture of the spinal cord. In: Developments in Electromyography and Clinical Neurophysiology.Vol. 3. Desmedt, J. E., ed. Basel: S. Karger, pp. 20–37.Google Scholar
  80. Woolsey, T. A., and Van der Loos, H. (1970): The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res.17:205–242.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • John Szentágothai

There are no affiliations available

Personalised recommendations