Sources of Discovery in Neuroscience

  • John Z. Young


Frank Schmitt has been associated with so many aspects of research on the nervous system that it may be appropriate to do honour to him by trying to look at what has been discovered in neuroscience over the last forty years. This is a vast and indeed impossible task, and I shall make it even larger by trying to examine the general framework within which our science has grown. What have we been trying to do as we researched into the nervous system? What motives led each of us to study this part of the body? Is our work an academic exercise (whatever that may be), or is it to be thought of as an aid to humanity, say in medicine or education? What determines the methods that we use? Clearly the social milieu has an influence on each of us. Are we then slaves of bourgeois capitalism, or marxist or maoist socialism, or of some other ism? Does the system we belong to influence the research that we do?


Nerve Fibre Locus Coeruleus Optic Lobe Electrical Recording Giant Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W. R. (1969): Slow electrical phenomena in the central nervous system. Neurosci. Res. Program Bull 7:75–180.Google Scholar
  2. Adrian, E. D. (1914): The all-or-none principle in nerve. J. Physiol 47:460–474.PubMedGoogle Scholar
  3. Adrian, E. D., and Bronk, D. W. (1928): The discharge of impulses in motor nerve fibres. Part I. Impulses in single fibres of the phrenic nerve. J. Physiol 66:81–101.PubMedGoogle Scholar
  4. Aitken, J. T., Sharman, M., and Young, J. Z. (1947): Maturation of regenerating nerve fibres with various peripheral connexions. J. Anat 81:1–22.CrossRefGoogle Scholar
  5. Anlezark, G. M., Crow, T. J., and Greenway, A. P. (1973): Evidence that the noradrenergic innervation of the cerebral cortex is necessary for learning. J. Physiol 231:119P–120P.PubMedGoogle Scholar
  6. Bear, R. S., Schmitt, F. O., and Young, J. Z. (1937a): The sheath components of the giant nerve fibres of the squid. Proc. R. Soc. B 123:496–504.CrossRefGoogle Scholar
  7. Bear, R. S., Schmitt, F. O., and Young, J. Z. (1937b): The ultrastructure of nerve axoplasm. Proc. R.Soc.B 123:505–519.CrossRefGoogle Scholar
  8. Bear, R. S., Schmitt, F. O., and Young, J. Z. (1937c): Investigations on the protein constituents of nerve axoplasm. Proc. R. Soc. B 123:520–529.CrossRefGoogle Scholar
  9. Bernard, C. (1878–1879): Leçons sur les Phénomènes de la Vie Communs aux Animaux et aux Véqétaux (Cours de Physiologie Générale du Muséum d’Historie Naturelle). Vol. I and II. Paris: Ballière.Google Scholar
  10. Blakemore, C. (1974): Developmental factors in the formation of feature extracting neurons. In: The Neurosciences: Third Study Program Schmitt, F. O., and Worden, F. G., eds. Cambridge, Mass.: The MIT Press, pp. 105–113.Google Scholar
  11. Bliss, T. V. P., and Gardner-Medwin, A. R. (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J. Physiol 232:357–374.PubMedGoogle Scholar
  12. Bloom, F. E., Iversen, L. L., and Schmitt, F. O. (1970): Macromolecules in synaptic function. Neurosci. Res. Program Bull 8:325–455.PubMedGoogle Scholar
  13. Boycott, B. B., and Young, J. Z. (1957): Effects of interference with the vertical lobe on visual discriminations in Octopus vulgaris Lamarck. Proc. R. Soc. B 146:439–459.CrossRefGoogle Scholar
  14. Braitenberg, V. (1967): Is the cerebellar cortex a biological clock in the millisecond range? Prog. Brain Res 25:334–346.PubMedCrossRefGoogle Scholar
  15. Bullock, T. H. (1948): Properties of a single synapse in the stellate ganglion of squid. J. Neurophysiol 11:343–364.PubMedGoogle Scholar
  16. Cannon, W. B. (1932): The Wisdom of the Body New York: W. W. Norton.Google Scholar
  17. Cole, K. S. (1968): Membranes, Ions and Impulses. A Chapter of Classical Biophysics Berkeley: University of California Press.Google Scholar
  18. Cole, K. S., and Curtis, H.J. (1936): Electric impedance of nerve and muscle. Cold Spring Harbor Symp. Quant. Biol 4:73–89.CrossRefGoogle Scholar
  19. Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T., and Sherrington, C. S. (1932): Reflex Activity of the Spinal Cord London: Oxford University Press.Google Scholar
  20. Dale, H. H. (1953): Acetylcholine as a chemical transmitter of the effects of nerve impulses. In: Adventures in Physiology. With Excursions into Autopharmacology London: Pergamon Press, pp. 611–637.Google Scholar
  21. Denny-Brown, D. (1966): The Cerebral Control of Movement (The Sherrington Lectures VIII). Liverpool, Eng.: Liverpool University Press.Google Scholar
  22. Dowling, J. E. (1970): Organization of vertebrate retinas. The Jonas M. Friedenwald Memorial Lecture. Invest. Ophthalmol 9:655–680.PubMedGoogle Scholar
  23. Eccles, J. C. (1953): The Neurophysiological Basis of Mind. The Principles of Neurophysiology Oxford: Clarendon Press.Google Scholar
  24. Eccles, J. C., Granit, R., and Young, J. Z. (1932): Impulses in the giant nerve fibres of earthworms. J. Physiol 77:23P–25P.Google Scholar
  25. Erlanger, J., and Gasser, H. S. (1937): Electrical Signs of Nervous Activity Philadelphia: University of Pennsylvania Press.Google Scholar
  26. Evarts, E. V. (1968): Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol 31:14–27.PubMedGoogle Scholar
  27. Evarts, E. V., Bizzi, E., Burke, R. E., De Long, M., and Thach, W. T., Jr. (1971): Central control of movement. Neurosci. Res. Program Bull 9:2–170.Google Scholar
  28. Forbes, A. (1922): The interpretation of spinal reflexes in terms of present knowledge of nerve conduction. Physiol. Rev 2:361–414.Google Scholar
  29. Gaffan, D. (1972): Loss of recognition memory in rats with lesions of the fornix. Neuropsychologia 10:327–341.PubMedCrossRefGoogle Scholar
  30. Gaffan, D. (1973): Inhibitory gradients and behavioural contrast in rats with lesions of the fornix. Physiol. Behav 11:215–220.PubMedCrossRefGoogle Scholar
  31. Gaze, R. M. (1970): The Formation of Nerve Connections. A Consideration of Neural Specificity Modulation and Comparable Phenomena New York: Academic Press.Google Scholar
  32. Gaze, R. M., Keating, M. J., and Chung, S. H. (1974): The evolution of the retinotectal map during development in Xenopus. Proc. R. Soc. B 185:301–330.CrossRefGoogle Scholar
  33. Gerard, R. W., and Young, J. Z. (1937): Electrical activity of the central nervous system of the frog. Proc. R. Soc. B 122:343–352.CrossRefGoogle Scholar
  34. Geren, B. B. (1954): The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res 7:558–562.CrossRefGoogle Scholar
  35. Granit, R. (1972): Mechanisms Regulating the Discharge of Motoneurons (The Sherrington Lectures XI). Springfield, Ill.: C. C Thomas.Google Scholar
  36. Gray, E. G., and Young, J. Z. (1968): The electron microscopy of experimental degeneration in the octopus brain. In: Cell Structure and Its Interpretation. Essays Presented to John Randal Baker F. R. S McGee-Russell, S. M., and Ross, K. F. A., eds. London: Edward Arnold, pp. 371–380.Google Scholar
  37. Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972): Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol 35:96–111.PubMedGoogle Scholar
  38. Hebb, D. O. (1949): The Organization of Behavior. A Neuropsychological Theory New York: John Wiley.Google Scholar
  39. Henderson, L.J. (1913): The Fitness of the Environment. An Inquiry into the Biological Significance of the Properties of Matter New York: Crowell-Collier and MacMillan.Google Scholar
  40. Hess, W. R. (1956): Hypothalamus and Thalamus. Experimental Documentation Stuttgart: Georg Thieme Verlag.Google Scholar
  41. Hobbs, M.J., and Young, J. Z. (1973): A cephalopod cerebellum. Brain Res 55:424–430.PubMedCrossRefGoogle Scholar
  42. Hodgkin, A. L. (1954): A note on conduction velocity. J. Physiol 125:221–224.PubMedGoogle Scholar
  43. Hodgkin, A. L., and Huxley, A. F. (1952): A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 117:500–544.PubMedGoogle Scholar
  44. Horridge, G. A. (1962): Learning of leg position by the ventral nerve cord in headless insects. Proc. R. Soc. B 157:33–52.CrossRefGoogle Scholar
  45. Horridge, G. A. (1973): Summary. In: Australian Academy of Science Report: Symposium on Biological Memory Google Scholar
  46. Hoyle, G. (1970): Cellular mechanisms underlying behavior—neuroethology. Adv. Insect Physiol 7:349–444.CrossRefGoogle Scholar
  47. Hubel, D. H., and Wiesel, T. N. (1959): Receptive fields of single neurones in the cat’s striate cortex. J. Physiol 148:574–591.PubMedGoogle Scholar
  48. Jameson, F. (1972): The Prison-House of Language: A Critical Account of Structuralism and Russian Formalism (Princeton Essays in European and Comparative Literature). Princeton, N.J.: Princeton University Press.Google Scholar
  49. John, E. R. (1967): Mechanisms of Memory New York: Academic Press.Google Scholar
  50. Kandel, E. R., and Kupfermann, I. (1970): The functional organization of invertebrate ganglia. Annu. Rev. Physiol 32:193–258.PubMedCrossRefGoogle Scholar
  51. Katz, B. (1966): Nerve, Muscle and Synapse New York: McGraw-Hill.Google Scholar
  52. Kennedy, D., Selverston, A. I., and Remler, M. P. (1969): Analysis of restricted neural networks. Science 164:1488–1496.PubMedCrossRefGoogle Scholar
  53. Kerkut, G. A. (1969): The use of snail neurons in neurophysiological studies. Endeavour 28:22–26.PubMedGoogle Scholar
  54. Kuhn, T. S. (1962): The Structure of Scientific Revolutions Chicago: University of Chicago Press.Google Scholar
  55. Kuntz, A. (1934): The Autonomic Nervous System Philadelphia: Lea and Febiger.Google Scholar
  56. Langley, J. N. (1903): The autonomic nervous system. Brain 26:1–26.CrossRefGoogle Scholar
  57. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. H. (1959): What the frog’s eye tells the frog’s brain. Proc. IRE 47:1940–1951.CrossRefGoogle Scholar
  58. Lopresti, V., Macagno, E. R., and Levinthal, C. (1973): Structure and development of neuronal connections in isogenic organisms: cellular interactions in the development of the optic lamina of Daphnia. Proc. Natl. Acad. Sci. USA 70:433–437.CrossRefGoogle Scholar
  59. Lorente de Nó, R. (1938): Analysis of the activity of the chains of internuncial neurons. J. Neurophysiol 1:207–244.Google Scholar
  60. Lucas, K. (1909): The “all or none” contraction of the amphibian skeletal muscle fibre. J. Physiol 38:113–133.PubMedGoogle Scholar
  61. Lucas, K. (1912): Croonian Lecture: The process of excitation in nerve and muscle. Proc. R. Soc. B 85:495–524.CrossRefGoogle Scholar
  62. Mark, R. (1973): Cellular mechanisms of neural memory. In: Australian Academy of Science Report: Symposium on Biological Memory Google Scholar
  63. Miledi, R. (1967): Spontaneous synaptic potentials and quantal release of transmitter in the stellate ganglion of the squid. J. Physiol 192:379–406.PubMedGoogle Scholar
  64. Mokrasch, L. C., Bear, R. S., and Schmitt, F. O. (1971): Myelin. Neurosci. Res. Program Bull 9:440–598.Google Scholar
  65. Mountcastle, V. B. (1957): Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol 20:408–434.PubMedGoogle Scholar
  66. Müller, J. (1848): The Physiology of the Senses, Voice, and Muscular Motion, with the Mental Facilities Baly, W., trans. London: Taylor, Walton and Maberly.Google Scholar
  67. Nishioka, R. S., Hagadorn, I. R., and Bern, H. A. (1962): Ultrastructure of the epistellar body of the Octopus. Z. Zellforsch. Mikrosk. Anat 57:406–421.PubMedCrossRefGoogle Scholar
  68. Offner, F., Weinberg, A., and Young, G. (1940): Nerve conduction theory: Some mathematical consequences of Bernstein’s model. Bull. Math. Biophys 2:89–103.CrossRefGoogle Scholar
  69. O’Keefe, J., and Dostrovsky, J. (1971): The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175.PubMedCrossRefGoogle Scholar
  70. Papez, J. W. (1937): A proposed mechanism of emotion. Arch. Neurol. Psychiatr 38:725–743.Google Scholar
  71. Pavlov, I. P. (1927): Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex Anrep, G. V., trans, and ed. Oxford: Oxford University Press.Google Scholar
  72. Pettigrew, J. D. (1974): The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J. Physiol 237:49–74.PubMedGoogle Scholar
  73. Popper, K. R. (1972): Objective Knowledge: An Evolutionary Approach Oxford: Clarendon Press.Google Scholar
  74. Pumphrey, R. J., and Young, J. Z. (1938): The rates of conduction of nerve fibres of various diameters in cephalopods. J. Exp. Biol 15:453–466.Google Scholar
  75. Ritter, S., and Stein, L. (1973): Self-stimulation of noradrenergic cell group (A6) in Locus coeruleus of rats. J. Comp. Physiol. Psychol. 85:443–452.PubMedCrossRefGoogle Scholar
  76. Robertson, J. D. (1955): The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J. Biophys. Biochem. Cytol 1:271–278.PubMedCrossRefGoogle Scholar
  77. Robertson, J. D. (1965): The synapse: Morphological and chemical correlates of function. Neurosci. Res. Program Bull 3(4): 1–79.Google Scholar
  78. Rushton, W. A. H. (1951): A theory of the effects of fibre size in medullated nerve. J. Physiol 115:101–122.PubMedGoogle Scholar
  79. Sanders, G. D., and Young, J. Z. (1974): Reappearance of specific colour patterns after nerve regeneration in Octopus. Proc. R. Soc. B 186:1–11.CrossRefGoogle Scholar
  80. Saussure, F. de (1916): Cours de Linguistique Générale Paris: Payot.Google Scholar
  81. Schmitt, F. O. (1967): Molecular parameters in brain function. In: The Human Mind Roslansky, J. D., ed. Amsterdam: North-Holland, pp. 109–138.Google Scholar
  82. Schmitt, F. O., and Samson, F. E., Jr. (1969): Brain cell microenvironment. Neurosci. Res. Program Bull 7: 277–417.Google Scholar
  83. Sherrington, G. S. (1906): The Integrative Action of the Nervous System New York: Scribner.Google Scholar
  84. Sjöstrand, F. S. (1953): The lamellated structure of the nerve myelin sheath as revealed by high resolution electron microscopy. Experientia 9:68–69.PubMedCrossRefGoogle Scholar
  85. Spencer, W. A., and Kandel, E. R. (1961): Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol 24:272–285.Google Scholar
  86. Sperry, R. W. (1944): Optic nerve regeneration with return of vision in anurans. J. Neurophysiol 7:57–69.Google Scholar
  87. Sperry, R.W. (1950): Neural basis of the spontaneous optokinetic response, J. Comp, Physiol. Psychol 4:482–489.CrossRefGoogle Scholar
  88. Stephens, R. (1974): Electrophysiological studies of the brain of Octopus vulgaris. J. Physiol 240:19 pp.Google Scholar
  89. Tauc, L. (1967): Transmission in invertebrate and vertebrate ganglia. Physiol. Rev 47:521–593.PubMedGoogle Scholar
  90. Ungerstedt, U. (1971): Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand 367 (Suppl.):l–48.Google Scholar
  91. Von Holst, E. (1973): The Selected Papers of Eric von Holst Vol. 1. The Behavioural Physiology of Animals and Man Martin, R., trans. London: Methuen.Google Scholar
  92. Wall, P. D. (1965): Functional specificity. Neurosci. Res. Program Bull 3:55–56,Google Scholar
  93. Wall, P. D. (1965): Functional specificity. Neurosci. Res. Program Bull 3:61. AlsoGoogle Scholar
  94. Wall, P. D. (1965): In: Neurosciences Research Symposium Summaries Vol. 1. Schmitt, F. O., et al., eds. Cambridge, Mass.: The MIT Press (1966) pp. 229–230,Google Scholar
  95. Wall, P. D. (1965): In: Neurosciences Research Symposium Summaries Vol. 1. Schmitt, F. O., et al., eds. Cambridge, Mass.: The MIT Press (1966) pp. 235.Google Scholar
  96. Warrington, E. K. (1971): Neurological disorders of memory. Br. Med. Bull 27:243–247.PubMedGoogle Scholar
  97. Waxman, S. G. (1974): Ultrastructural differentiation of the axon membrane at synaptic and non-synaptic central nodes of Ranvier. Brain Res 65:338–342.PubMedCrossRefGoogle Scholar
  98. Webb, D. A., and Young, J. Z. (1940): Electrolyte content and action potential of the giant nerve fibres of Loligo. J. Physiol 98:299–313.PubMedGoogle Scholar
  99. Wells, M.J. (1965): The vertical lobe and touch learning in the octopus. J. Exp. Biol 42:233–255.PubMedGoogle Scholar
  100. Wiener, N. (1948): Cybernetics, or Control and Communication in the Animal and the Machine Cambridge, Mass.: The MIT Press.Google Scholar
  101. Wiersma, C. A. G. (1952): The neuron soma. Neurons of arthropods. Cold Spring Harbor Symp. Quant. Biol 17:155–163.PubMedCrossRefGoogle Scholar
  102. Wiesel, T. N., and Hubel, D. H. (1963): Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol 26:978–993.PubMedGoogle Scholar
  103. Wurtman, R. J. (1971): Brain monoamines and endocrine function. Neurosci. Res. Program Bull 9:172–297.Google Scholar
  104. Young, J. Z. (1929): Sopra un nuovo organo dei cefalopodi. Boll. Soc. Ital. Biol. Sper 4:1022–1024.Google Scholar
  105. Young, J. Z. (1936a): The giant nerve fibres and epistellar body of cephalopods. Q.. J. Microsc. Sci 78:367–386.Google Scholar
  106. Young, J. Z. (1936b): Structure of nerve fibres and synapses in some invertebrates. Cold Spring Harbor Symp. Quant. Biol 4:1–6.CrossRefGoogle Scholar
  107. Young, J. Z. (1938a): The evolution of the nervous system and of the relationship of organism and environment. In: Evolution. Essays on Aspects of Evolutionary Biology Presented to Prof. E. S. Goodrich on his 70th Birthday De Beer, G. R., ed. Oxford: Clarendon Press, pp. 179–204.Google Scholar
  108. Young, J. Z. (1938b): The functioning of the giant nerve fibres of the squid. J. Exp. Biol 15:170–185.Google Scholar
  109. Young, J. Z. (1944): Giant nerve-fibres. Endeavour 3:108–113.Google Scholar
  110. Young, J. Z. (1964): A Model of the Brain Oxford: Clarendon Press.Google Scholar
  111. Young, J. Z. (1965): The Croonian Lecture, 1965: The organization of a memory system. Proc. R. Soc. B 163:285–320.CrossRefGoogle Scholar
  112. Young, J. Z. (1973): Memory as a selective process. In: Australian Academy of Science Report: Symposium on Biological Memory, pp. 25–45.Google Scholar
  113. Young, J. Z. (1974): The central nervous system of Loligo I. The optic lobe. Phil. Trans. R. Soc. B. 267:263–302.PubMedCrossRefGoogle Scholar
  114. Young, T. (1802): The Bakerian Lecture: On the theory of light and colours. Phil. Trans. R. Soc. B. 95:12–48.Google Scholar
  115. Zeki, S. M. (1973): Colour coding in rhesus monkey prestriate cortex. Brain Res. 53:422–427.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • John Z. Young

There are no affiliations available

Personalised recommendations