NGF: An Uncharted Route

  • Rita Levi-Montalcini


A disclaimer of personal merit, such as phrased above by Lwoff, is not a disclaimer of the significance of a phenomenon that chance rather than calculated search has brought to one’s attention, and for this reason I have accepted with pleasure the very flattering invitation to discuss the history of nerve growth factor (NGF). I am afraid, however, that the following account will not provide a unique glimpse into the paths of discovery that have shaped the course and content of neuroscience in recent decades. The NGF has in fact still not found its place in the broadening panorama of neuroscience, and, even worse, twenty years after its coming into existence this factor has disclosed only a few, perhaps the most trivial, of its traits. It keeps us wondering where it is heading, and whether its uncharted route has, indeed, any ending.


Nerve Growth Factor Chick Embryo Snake Venom Sympathetic Neuron Sympathetic Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angeletti, P.U., and Levi-Montalcini, R. (1970): Sympathetic nerve cell destruction in newborn mammals by 6-hydroxydopamine. Proc. Natl. Acad. Sci. USA 65:114–121.PubMedCrossRefGoogle Scholar
  2. Angeletti, P.U., and Levi-Montalcini, R. (1972): Growth inhibition of sympathetic cells by some adrenergic blocking agents. Proc. Natl. Acad. Sci. USA 69:86–88.PubMedCrossRefGoogle Scholar
  3. Angeletti, P.U., Levi-Montalcini, R., and Calissano, P. (1968): The nerve growth factor (NGF): Chemical properties and metabolic effects. Adv. Enzymol. 31:51–75.PubMedGoogle Scholar
  4. Angeletti, P.U., Levi-Montalcini, R., and Zanini, A. (1971): Immunochemical properties of the nerve growth factor. In: Hormones in Development. Hamburgh, M., and Barrington, E.J.W., eds. New York: Appleton-Century-Crofts, pp. 731–738.Google Scholar
  5. Angeletti, R.H., and Bradshaw, R.A. (1971): Nerve growth factor from mouse submaxillary gland: Amino acid sequence. Proc. Natl. Acad. Sci. USA 68:2417–2420.PubMedCrossRefGoogle Scholar
  6. Bocchini, V., and Angeletti, P.U. (1969): The nerve growth factor: Purification as a 30,000-molecular-weight protein. Proc. Natl. Acad. Sci. USA 64:787–794.PubMedCrossRefGoogle Scholar
  7. Bueker, E.D. (1948): Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat. Rec. 102:369–389.PubMedCrossRefGoogle Scholar
  8. Calissano, P., and Cozzari, C. (1974): Interaction of NGF with the mouse brain neurotubule proteins. Proc. Natl. Acad. Sci. USA 71:2131–2135.PubMedCrossRefGoogle Scholar
  9. Cohen, S. (1960): Purification of a nerve-growth promoting protein from the mouse salivary gland and its neurocytotoxic antiserum. Proc. Natl. Acad. Sci. USA 46:302–311.PubMedCrossRefGoogle Scholar
  10. Cohen, S. (1962): Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237:1555–1562.PubMedGoogle Scholar
  11. Cohen, S., and Levi-Montalcini, R. (1956): A nerve growth-stimulating factor isolated from snake venom. Proc. Natl. Acad. Sci. USA 42:571–574.PubMedCrossRefGoogle Scholar
  12. Cohen, S., Levi-Montalcini, R., and Hamburger, V. (1954): A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc. Natl. Acad. Sci. USA 40:1014–1018.PubMedCrossRefGoogle Scholar
  13. Dahlström, A. (1969): Synthesis, transport, and life-span of amine storage granules in sympathetic adrenergic neurons. In: Cellular Dynamics of the Neuron (Symposia of the International Society for Cell Biology, vol. 8). Barondes, S.H., ed. New York: Academic Press, pp. 153–174.Google Scholar
  14. Edelman, G.M., Yahara, I., and Wang, J.L. (1973): Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc. Natl. Acad. Sci. USA 70:1442–1446.PubMedCrossRefGoogle Scholar
  15. Fine, R.E., and Bray, D. (1971): Actin in growing nerve cells. Nature [New Biol.] 234:115–118.CrossRefGoogle Scholar
  16. Hamburger, V. (1934): The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J. Exp. Zool. 68:449–494.CrossRefGoogle Scholar
  17. Hendry, I.A., and Iversen, L.L. (1973): Reduction in the concentration of Nerve Growth Factor in mice after sialectomy and castration. Nature 243:500–504.CrossRefGoogle Scholar
  18. Inoué, S., and Sato, H. (1967): Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol. 50 (Suppl.):259–288.PubMedCrossRefGoogle Scholar
  19. Larrabee, M.G. (1972): Metabolism during development in sympathetic ganglia of chickens: Effects of age, nerve growth factor and metabolic inhibitors. In: Zaimis and Knight (1972), pp. 71–88.Google Scholar
  20. Levi-Montalcini, R. (1949): The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J. Comp. Neurol. 91:209–241.PubMedCrossRefGoogle Scholar
  21. Levi-Montalcini, R. (1952): Effects of mouse tumor transplantation on the nervous system. Ann. NT Acad. Sci. 55:330–343.CrossRefGoogle Scholar
  22. Levi-Montalcini, R. (1964): Growth control of nerve cells by a protein factor and its antiserum. Science 143:105–110.PubMedCrossRefGoogle Scholar
  23. Levi-Montalcini, R. (1966): The Nerve Growth Factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect. 60:217–259.PubMedGoogle Scholar
  24. Levi-Montalcini, R. (1974): Control mechanisms of the adrenergic neuron. In:Dynamics of Degeneration and Growth in Neurons (Wenner-Gren Symposium Series, vol. 22). Fuxe, K., ed. New York: Pergamon Press, pp. 297–314.Google Scholar
  25. Levi-Montalcini, R., Aloe, L., and Johnson, E.M., Jr. (1973): Interaction between the nerve growth factor (NGF), guanethidine and 6-hydroxydopamine in sympathetic neurons. In: Frontiers in Catecholamine Research (III International Catecholamine Symposium, Université de Strasbourg, 1973). Usdin, E., and Snyder, S.H., eds. New York: Pergamon Press, pp. 267–276.Google Scholar
  26. Levi-Montalcini, R., and Angeletti, P.U. (1968): Nerve growth factor. Physiol. Rev. 48:534–569.PubMedGoogle Scholar
  27. Levi-Montalcini, R., and Angeletti, P.U. (1971): Ultrastructure and metabolic studies on sensory and sympathetic nerve cells treated with the nerve growth factor and its antiserum. In:Hormones in Development. Hamburgh, M., and Barrington, E.J.W., eds. New York: Appleton-Century-Crofts, pp. 719–730.Google Scholar
  28. Levi-Montalcini, R., and Booker, B. (1960a): Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc. Natl. Acad. Sci. USA 46:373–384.PubMedCrossRefGoogle Scholar
  29. Levi-Montalcini, R., and Booker, B. (1960b): Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc. Natl. Acad. Sci. USA 46:384–391.PubMedCrossRefGoogle Scholar
  30. Levi-Montalcini, R., Caramia, F., and Angeletti, P.U. (1969): Alterations in the fine structure of nucleoli in sympathetic neurons following NGF-antiserum treatment. Brain Res. 12:54–73.PubMedCrossRefGoogle Scholar
  31. Levi-Montalcini, R., Caramia, F., Luse, S.A., and Angeletti, P.U. (1968): In vitro effects of the nerve growth factor on the fine structure of the sensory nerve cells. Brain Res. 8:347–362.PubMedCrossRefGoogle Scholar
  32. Levi-Montalcini, R., and Hamburger, V. (1951): Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116: 321–361.PubMedCrossRefGoogle Scholar
  33. Levi-Montalcini, R., and Hamburger, V. (1953): A diffusible agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embryo. J. Exp. Zool. 123:233–287.CrossRefGoogle Scholar
  34. Levi-Montalcini, R., and Levi, G. (1942): Les conséquences de la destruction d’un territoire d’innervation périphérique sur le développement des centres nerveux correspondants dans l’embryon de poulet. Arch. Biol. (Liège) 53:537–545.Google Scholar
  35. Levi-Montalcini, R., Meyer, H., and Hamburger, V. (1954): In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 14:49–57.PubMedGoogle Scholar
  36. Levi-Montalcini, R., Revoltella, L., and Calissano, P. (1974): Microtubule proteins in the Nerve Growth Factor-mediated response (interaction between the Nerve Growth Factor and its target cells). Recent Prog. Horm. Res. 30:635–669.PubMedGoogle Scholar
  37. Lwoff, A. (1966): The prophage and I. In: Phage and the Origins of Molecular Biology. Cairns, J., Stent, G.S., and Watson, J.D., eds. Long Island, N.Y.: Cold Spring Harbor Laboratory of Quantitative Biology, pp. 88–99.Google Scholar
  38. Moran, D.T., and Varela, F.G. (1971): Microtubules and sensory transduction. Proc. Natl. Acad. Sci. USA 68:757–760.PubMedCrossRefGoogle Scholar
  39. Plaut, M., Lichtenstein, L.M., and Henney, C.S. (1973): Studies on the mechanism of lymphocyte-mediated cytolysis. III. The role of microfilaments and microtubules. J. Immunol. 110: 771–780.PubMedGoogle Scholar
  40. Revoltella, L., Bertolini, L., and Pediconi, M. (1974): Unmasking of Nerve Growth Factor membrane-specific binding sites in synchronized murine C 1300 neuroblastoma cells. Exp. Cell Res. 85:89–94.PubMedCrossRefGoogle Scholar
  41. Revoltella, R., Bertolini, L., Pediconi, M., and Vigneti, E. (1974): Specific binding of Nerve Growth Factor (NGF) by murine C 1300 neuroblastoma cells. J. Exp. Med. 140:437–451PubMedCrossRefGoogle Scholar
  42. Schmitt, F.O. (1950): The structure of the axon filaments of the giant nerve fibers of Loligo and Myxicola. J. Exp. Zool. 113:499–515.CrossRefGoogle Scholar
  43. Schmitt, F.O. (1957): The fibrous protein of the nerve axon. J. Cell. Comp. Physiol. 49:165–174.CrossRefGoogle Scholar
  44. Schmitt, F.O. (1968a): The molecular biology of neuronal fibrous proteins. Neurosci. Res. Program Bull, 6:119–144.Google Scholar
  45. Schmitt, F.O. (1968a): The molecular biology of neuronal fibrous proteins. In: Neurosciences Research Symposium Summaries. Vol. 3. Cambridge, Mass.: The MIT Press (1969), pp. 307–332.Google Scholar
  46. Schmitt, F.O. (1968b): Fibrous proteins, neuronal organelles. Proc. Natl. Acad. Sci. USA 60:1092–1101.PubMedCrossRefGoogle Scholar
  47. Schmitt, F.O. (1970): Molecular neurobiology: An interpretive survey. In:The Neurosciences: Second Study Program. Schmitt, F.O., editor-in-chief. New York: Rockefeller University Press, pp. 867–879.Google Scholar
  48. Schmitt, F.O., and Davison, P.F. (1961): Biologie moléculaire des neurofilaments. In: Actualités Neurophysiologiques. 3ième série. Monnier, A.-M., ed. Paris: Masson et Cie., pp. 355–369.Google Scholar
  49. Schmitt, F.O., and Geren, B.B. (1950): The fibrous structure of the nerve axon in relation to the localization of “neurotubules.” J. Exp. Med. 91:499–504.PubMedCrossRefGoogle Scholar
  50. Shelanski M.L., Gaskin, F., and Cantor, C.R. (1973): Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70:765–768.PubMedCrossRefGoogle Scholar
  51. Steiner, G., and Schoenbaum, E., eds. (1972): Immunosympathectomy. Amsterdam: Elsevier.Google Scholar
  52. Strom, T.B., Garovoy, M.R., Carpenter, C.B., and Merrill, J.P. (1973): Microtubule function in immune and nonimmune lymphocyte-mediated cytotoxicity. Science 181:171–172.PubMedCrossRefGoogle Scholar
  53. Taylor, A., Mamelak, M., Reaven, E., and Maffly, R. (1973): Vasopressin: Possible role of microtubules and microfilaments in its action. Science 181:347–349.PubMedCrossRefGoogle Scholar
  54. Taylor, D., and Varela, F.G. (1971): Microtubules and sensory transduction. Proc. Natl. Acad. Sci. USA 68:757–760.CrossRefGoogle Scholar
  55. Thoenen, H., and Tranzer, J.P. (1968): Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedbergs Arch. Pharmacol. 261:271–288.Google Scholar
  56. Tilney, L.G. (1971): Origin and continuity of microtubules. In: Origin and Continuity of Cell Organelles (Results and Problems in Cell Differentiation. A Series of Topical Volumes in Developmental Biology. Vol. 2). Reinert, J., and Ursprung, H., eds. Berlin: Springer-Verlag, pp. 222–260.Google Scholar
  57. Ukena, T.E., and Berlin, R.D. (1972): Effect of colchicine and vinblastine on the topographical separation of membrane functions. J. Exp. Med. 136:1–7.PubMedCrossRefGoogle Scholar
  58. Varon, S., Nomura, J., and Shooter, E.M. (1967): Subunit structure of a high-molecular-weight form of the nerve growth factor from mouse submaxillary gland. Proc. Natl. Acad. Sci. USA 57: 1782–1789.PubMedCrossRefGoogle Scholar
  59. Weiss, P. (1967): Neuronal dynamics and axonal flow, III. Cellulifugal transport of labeled neuroplasm in isolated nerve preparations. Proc. Natl. Acad. Sci. USA 57:1239–1245.PubMedCrossRefGoogle Scholar
  60. Yamada, K.M., Spooner, B.S., and Wessells, N.K. (1970): Axon growth: Roles of microfilaments and microtubules. Proc. Natl. Acad. Sci. USA 66:1206–1212.PubMedCrossRefGoogle Scholar
  61. Zaimis, E., and Knight, J., eds. (1972): Nerve Growth Factor and Its Antiserum. London: Athlone Press of the University of London.Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Rita Levi-Montalcini

There are no affiliations available

Personalised recommendations