Advertisement

Targeted Cellular Cytotoxicity

  • David M. Segal
  • Carolina R. Jost
  • Andrew J. T. George

Abstract

Cell-mediated cytolysis occurs when a cytotoxic cell binds and delivers a “lethal hit” to a target cell. Several types of cells commonly found in blood are capable of performing cytolysis, including monocytes, neutrophils, eosinophils, natural killer (NK) cells, platelets, and T lymphocytes. The T-cell receptors (TCR) on T cells and the Fc γ receptors (Fc γ R) on myeloid cells, NK cells, and platelets are two well-characterized families of cell surface glycoproteins that are involved in binding target cells and triggering lysis.

Keywords

Effector Cell Bispecific Antibody Parental Antibody Bispecific Monoclonal Antibody Idiotypic Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew SM, Perez P, Nicholls PJ, George AJT, Huston JS, Oppermann H, Seal DM (1991): Production of single chain bispecific antibody by recombinant DNA technology. In: Bispecific Antibodies and Targeted Cellular Cytotoxicity, ’ Second International Conference, Seillac, France. October 9–13, 1990, Romet-Lemonne JL, Fanger MW, Segal DM, eds. Fondation Nationale de Transfusion Sanguine, Les Ulis, France. 197–199Google Scholar
  2. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988): Single-chain antigen-binding proteins. Science 242: 423–426CrossRefGoogle Scholar
  3. Brennan M, Davison PF, Paulus H (1985): Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin GI fragments. Science 229: 81–83CrossRefGoogle Scholar
  4. Brissinck J, Demanet C, Moser M, Leo L, Thielemans K (1991): Treatment of mice bearing BCL1 lymphoma with bispecific antibodies. J Immunol 147: 4019–4026Google Scholar
  5. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989): A recombinant immunotoxin consisting of two antibody variable domains fused to pseudomonas exotoxin. Nature 339: 394–397CrossRefGoogle Scholar
  6. Clark MR, Waldmann H (1987): T-cell killing of target cells induced by hybrid antibodies: Comparison of two bispecific monoclonal antibodies. J Natl Cancer Inst 79: 1393–1401Google Scholar
  7. Clark M, Gilliland L, Waldmann H (1988): Hybrid antibodies for therapy. Prog Allergy 45: 31–49Google Scholar
  8. Corvalan JR, Smith W (1987): Construction and characterisation of a hybrid-hybrid monoclonal antibody recognising both carcinoembryonic antigen (CEA) and vinca alkaloids. Cancer Immunol Immunother 24: 127–132Google Scholar
  9. De Lau WBM, Heije K, Neefjes JJ, Oosterwegel M, Rozemuller E, Bast BJEG (1991): Absence of preferential homologous H/L chain association in hybrid hybridomas. J Immunol 146: 906–914Google Scholar
  10. De Lau WB, Van Loon AE, Heije K, Valerio D, Bast BJ (1989): Production of hybrid hybridomas based on HAT(s)-neomycin(r) double mutants. J Immunol Methods 117: 1–8CrossRefGoogle Scholar
  11. Demanet C, Brissinck J, Van Mechelen M, Leo O. Thiele-mans K (1991): Treatment of murine B cell lymphoma with bispecific monoclonal antibodies (anti—idiotype x anti-CD3). J Immunol 147: 1091–1097Google Scholar
  12. Erbe DV, Collins JE, Shen L, Graziano RF, Fanger MW (1990): The effect of cytokines on the expression and function of Fc receptors for IgG on human myeloid cells. Mol Immunol 27: 57–67CrossRefGoogle Scholar
  13. Ertl HC, Greene MI, Noseworthy JH, Fields BN, Nepom JT, Spriggs DR, Finberg RW (1982): Identification of idiotypic receptors on retrovirus-specific cytotoxic T cells. Proc Natl Acad Sci USA 79: 7479–7483CrossRefGoogle Scholar
  14. Fanger MW, Guyre PM (1991): Bispecific antibodies for targeted cellular cytotoxicity. Trends Biotechnol 9: 375–380CrossRefGoogle Scholar
  15. Fanger MW, Graziano RF, Shen L, Guyre PM (1989): Fc..R cytotoxicity exerted by mononuclear cells. Chem Immunol 47: 214–253CrossRefGoogle Scholar
  16. Garrido MA, Perez P, Titus JA, Valdayo MJ, Winkler DA, Barbieri SA, Wunderlich JR, Segal DM (1990a): Targeted cytotoxic cells in human peripheral blood lymphocytes. J Immunol 144: 2891–2898Google Scholar
  17. Garrido MA, Valdayo MJ, Winkler DF, Titus JA, Hecht TT, Perez P, Segal DM, Wunderlich JR (1990b): Targeting human T lymphocytes with bispecific antibodies to react against human ovarian carcinoma cells in nu/ nu mice. Cancer Res 50: 4227–4232Google Scholar
  18. Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987): Preparation and performance of bispecific F(ab)’2 antibody containing thioether-linked Fab’.. fragments. J Immunol 139: 2367–2375Google Scholar
  19. Graziano RF, Fanger MW (1987a): Human monocyte-mediated cytotoxicity: The use of Ig-bearing hybridomas as target cells to detect trigger molecules on the monocyte cell surface. J Immunol 138: 945–950Google Scholar
  20. Graziano RF, Fanger MW (1987b): Fc_RI and Fc RII on monocytes and granulocytes are cytotoxic trigger molecules for tumor cells. J Immunol 139: 3536–3541Google Scholar
  21. Graziano RF, Looney RJ, Shen L, Fanger MW (1989): Fc..R-mediated killing by eosinophils. J Immunol 142: 230–235Google Scholar
  22. Henkart PA (1985): Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol 3: 31–58CrossRefGoogle Scholar
  23. Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984): Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med 160: 75–93CrossRefGoogle Scholar
  24. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies SN, Ridge RJ, Bruccoleri RE, Haber E, Crea R (1988): Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia colie. Proc Natl Acad Sci USA 85: 5879–5883CrossRefGoogle Scholar
  25. Jung G, Muller-Eberhard HJ (1988): An in vitro model for tumor immunotherapy with antibody heteroconjugates. Immunol Today 9: 257–260CrossRefGoogle Scholar
  26. Jung G, Freimann U, Von Marschall Z, Reisfeld RA, Wilmanns W (1991): Target cell-induced T cell activation with bi-and trispecific antibody fragments. Eur J Immunol 21: 2431–2435CrossRefGoogle Scholar
  27. Jung G, Honsik CJ, Reisfeld RA, Muller-Eberhard HJ (1986): Activation of human peripheral blood mononuclear cells by anti-T3: Killing of tumor target cells coated with anti-target-anti-T3 conjugates. Proc Natl Acad Sci USA 83: 4479–4483CrossRefGoogle Scholar
  28. Jung G, Ledbetter JA, Muller-Eberhard HJ (1987): Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heterconjugates. Proc Natl Acad Sci USA 84: 4611–4615CrossRefGoogle Scholar
  29. Karawajew L, Micheel B, Behrsing O, Gaestel M (1987): Bispecific antibody-producing hybrid hybridomas selected by a fluorescence activated cell sorter. J Immunol Methods 96: 265–270CrossRefGoogle Scholar
  30. Karawajew L, Rudchenko S, Wlasik T, Trakht I, Rakitskaya V (1990): Flow sorting of hybrid hybridomas using the DNA stain Hoechst 33342. J Immunol Methods 129: 277–282CrossRefGoogle Scholar
  31. Karpovsky B, Titus JA, Stephany DA, Segal DM (1984): Production of target-specific effector cells using heterocross-linked aggregates containing anti-target cell and anti-Fe.. receptor antibodies. J Exp Med 160: 1686–1701CrossRefGoogle Scholar
  32. King TP, Li Y, Kochoumian L (1978): Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry 17: 1499–1506CrossRefGoogle Scholar
  33. Koolwijk P, Rozemuller E, Stad RK, De Lau WB, Bast BJ (1988): Enrichment and selection of hybrid hybridomas by Percoll density gradiant centrifugation and fluorescent-activated cell sorting. Hybridoma 7: 217–225CrossRefGoogle Scholar
  34. Lancki DW, Ma DI, Havran WL, Fitch FW (1984): Cell surface structures involved in T cell receptor complex but involved in T cell activation. Immunol Rev 81: 65–94CrossRefGoogle Scholar
  35. Lanier LL, Yu G, Phillips Hi (1989): Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342: 803–805CrossRefGoogle Scholar
  36. Lanzavecchia A, Scheidegger D (1987): The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 17: 105–111CrossRefGoogle Scholar
  37. Larrick JW, Wright SC (1990): Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J 4: 3215–3223Google Scholar
  38. Leeuwenberg JTM, Spits H, Tax WJM, Capel PJA (1985): Induction of nonspecific cytotoxicity by monoclonal anti-T3 antibodies. J Immunol 134: 3770–3775Google Scholar
  39. Leo O, Foo M, Segal DM, Shevach E, Bluestone JA (1987): Activation of murine T lymphocytes with monoclonal antibodies: Detection on Lyt2+ cells of an antigen not associated with the T cell activation. J Immunol 139: 1214–1222Google Scholar
  40. Liu MA, Kranz DM, Kurnick JT, Boyle LA, Levy R, Eisen HN (1985): Heteroantibody duplexes target cells for lysis by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 82: 8648–8652CrossRefGoogle Scholar
  41. Lovchik JC, Hong R (1977): Antibody-dependent cell-mediated cytolysis (ADCC): analyses and projections. Prog Allergy 22: 1–44Google Scholar
  42. Mezzanzanica D, Garrido MA, Noblock DS, Daddona PE, Andrew SM, Zurawski VR, Segal DM, Wunderlich JR (1991): Human T-lymphocytes targeted against an established ovarian carcinoma with bispecific F(ab’), antibody prolong host survival in a murine xenograft model. Cancer Res 51: 5716–5721Google Scholar
  43. Milstein C, Cuello AC (1983): Hybrid hybridomas and their use in immunohistochemistry. Nature 305: 537–540CrossRefGoogle Scholar
  44. Milstein C, Cuello AC (1984): Hybrid hybridomas and production of bispecific monoclonal antibodies. Immunol Today 5: 299–304CrossRefGoogle Scholar
  45. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM, Regazzoni M, Tagliabue E, Colnaghi MI (1987): Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int Cancer 39: 297–303CrossRefGoogle Scholar
  46. Moran TM, Usuba O, Kuzu Y, Schulman J, Bona CA (1991): Inhibition of multicycle influenza virus replication by hybrid antibody-directed cytotoxic T lymphocyte lysis. J Immunol 146: 321–326Google Scholar
  47. Moretta A, Poggi A, Pende D, Tripodi G, Orengo AM, Pella N, Augugliaro R, Bottino C, Ciccone E, Moretta L (1991): CD69-mediated pathway of lymphocyte activation: Anti-CD69 monoclonal antibodies trigger the cytolytic activity of different lymphoid effector cells with the exception of cytolytic T lymphocytes expressing T cell receptor a/ß. J Exp Med 174: 1393–1398CrossRefGoogle Scholar
  48. Nisonoff A, Mandy WJ (1962): Quantitative estimation of the hybridization of rabbit antibodies. Nature 194: 355–359CrossRefGoogle Scholar
  49. Nitta T, Ikeda M, Azuma A, Yagita H, Sato K, Okumura K, Steinman L (1991): Clinical results of specific targeting therapy against human malignant glioma and prospects for future reagents based on the restricted T cell receptor repertoire in tumor infiltrating lymphocytes. In: Bispecific Antibodies and Targeted Cellular Cytoxicity. Second International Conference, Seillac, France October 9–13, 1990, Romet-Lemonne JL, Fanger MW, Segal DM, eds. Les Ulis, France: Foundation Nationale de Transfusion Sanguine 233–235Google Scholar
  50. Nitta T, Sato K, Yagita H, Okumura K, Ishii S (1990): Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335: 368–371CrossRefGoogle Scholar
  51. Old H (1985): Tumor necrosis factor (TNF). Science 230: 630–632CrossRefGoogle Scholar
  52. Ortho Multicenter Transplant Study Group (1985): A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med 313: 337–342CrossRefGoogle Scholar
  53. Paya CV, McKean DJ, Segal DM, Schoon RA, Schowalter SD, Leibson PJ (1989): Heteroconjugate antibodies enhance cell-mediated anti-herpes simplex virus immunity. J Immunol 142: 666–671Google Scholar
  54. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM (1985): Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316: 354–356CrossRefGoogle Scholar
  55. Perez P, Hoffman RW, Titus JA, Segal DM (1986a): Specific targeting of human peripheral blood T cells by heteroaggregates containing anti-T3 crosslinked to anti-target cell antibodies. J Exp Med 163: 166–178CrossRefGoogle Scholar
  56. Perez P, Titus JA, Lotze MT, Cuttitta F, Longo DL, Groves ES, Rabin H, Durda PJ, Segal DM (1986b): Specific lysis of human tumor cells by T cells coated with anti-T3 crosslinked to anti-tumor antibody. J Immunol 137: 2069–2072Google Scholar
  57. Podack ER, Kupfer A (1991): T-cell effector functions: Mechanisms for delivery of cytotoxicity and help. Annu Rev Cell Biol 7: 479–504CrossRefGoogle Scholar
  58. Qian JH, Titus JA, Andrew SM, Mezzanzanica D, Garrido MA, Wunderlich JR, Segal DM (1991): Human PBL targeted with bispecific antibodies release cytokines that are essential for inhibiting tumor growth. J Immunol 146: 3250–3256Google Scholar
  59. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies SN, Ridge RJ, Bruccoleri RE, Haber E, Crea R (1988): Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia colie. Proc Natl Acad Sci USA 85: 5879–5883CrossRefGoogle Scholar
  60. Segal DM, Snider DP (1989): Targeting and activation of cytotoxic lymphocytes. Chem Immunol 47: 179–213CrossRefGoogle Scholar
  61. Segal DM, Wunderlich JR (1988): Targeting of cytotoxic cells with heterocrosslinked antibodies. Cancer Invest 6: 83–92CrossRefGoogle Scholar
  62. Segal DM, Dower SK, Titus JA (1983): The role of non-immune IgG in controlling IgG-mediated effector functions. Mol Immunol 20: 1177–1189CrossRefGoogle Scholar
  63. Seth A, Gote L, Nagarkatti M, Nagarkatti PS (1991): T-cell-receptor-independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-I4 Proc nat Acad Sci USA 88: 7877–7881CrossRefGoogle Scholar
  64. Shalaby MR, Shepard HM, Presta L, Rodrigues ML, Beverley PCL, Feldmann M, Carter P (1992): Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells over-expressing the HER2 protooncogene. J Exp Med 175: 217–225CrossRefGoogle Scholar
  65. Shen LR, Graziano RF, Fanger MW (1989): The functional properties of Fc gamma RI, II and III on myeloid cells: A comparative study of killing of erythrocytes and tumor cells mediated through the different Fc receptors. Mol Immunol 26: 959–969CrossRefGoogle Scholar
  66. Shen L, Guyre PM, Anderson CL, Fanger MW (1986): Heteroantibody-mediated cytotoxicity: Antibody to the high affinity Fc receptor for IgG mediates cytotoxicity by human monocytes that is enhanced by interferon-y and is not blocked by human IgG. J Immunol 137: 3378–3382Google Scholar
  67. Shi T, Eaton AM, Ring DB (1991): Selection of hybrid hybridomas by flowing cytometry using a new combination of fluorescent vital stains. J Immunol Methods 141: 165–175CrossRefGoogle Scholar
  68. Siliciano RF, Pratt JC, Schmidt RE, Ritz J, Reinherz EL (1985): Activation of cytotoxic T lymphocyte and natural killer cell function through the TI sheep erthrocyte binding protein. Nature 317: 428–429CrossRefGoogle Scholar
  69. Songsivilai S, Lachmann PJ (1990): Bispecific antibody: A tool for diagnosis and treatment of disease. Clin Exp Immunol 79: 315–321CrossRefGoogle Scholar
  70. Songsivilai S, Clissold PM, Lachmann PJ (1989): A novel strategy for producing chimeric bispecific antibodies by gene transfection. Biochem Biophys Res Commun 164: 271–276CrossRefGoogle Scholar
  71. Springer TA (1990): Adhesion receptors of the immune system. Nature 346: 425–434CrossRefGoogle Scholar
  72. Staerz UD, Bevan MJ (1986a): Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 83: 1453–1457CrossRefGoogle Scholar
  73. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988): Single-chain antigen-binding proteins. Science 242: 423–426CrossRefGoogle Scholar
  74. Staerz UD, Kanagawa O, Bevan MJ (1985): Hybrid antibodies can target sites for attack by T cells. Nature 314: 628–631CrossRefGoogle Scholar
  75. Suresh MR, Cuello AC, Milstein C (1986): Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc Natl Acad Sci USA 83: 7989–7993CrossRefGoogle Scholar
  76. Tai MS, Mudgett-Hunter M, Levinson D, Wu GM, Haber E, Oppermann H, Huston JS (1990): A bifunctional fusion protein containing Fe-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29: 8024–8030CrossRefGoogle Scholar
  77. Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, Segal DM (1987a): Human T cells targeted with anti-T3 crosslinked to anti-tumor antibody prevent tumor growth in nude mice. J Immunol 138: 4018–4022Google Scholar
  78. Titus JA, Perez P, Kaubisch A, Garrido MA, Segal DM (1987b): Human K/NK cells targeted with heterocrosslinked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J Immunol 139: 3153–3158Google Scholar
  79. Traunecker A, Lanzavecchia A, Karjalainen K (1991): Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells. EMBO J 10: 3655–3659Google Scholar
  80. Tschopp J, Nabholz M (1990): Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 8: 279–302CrossRefGoogle Scholar
  81. Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987): Preparation and performance of bispecific F(ab)’2 antibody containing thioether-linked Fab’.. fragments. J Immunol 139: 2367–2375Google Scholar
  82. Tutt A, Stevenson GT, Glennie MJ (1991b): Trispecific F(ab’)3 derivatives that use cooperative signaling via the TCR/CD3 complex and CD2 to activate and redirect resting cytotoxic T cells. J Immunol 147: 60–69Google Scholar
  83. Urnovitz HB, Chang Y, Scott M, Fleischmann J, Lynch RG (1988): IgA:IgM and IgA:IgA hybrid hybridomas secrete heteropolymeric immunoglobulins that are polyvalent and bispecific. J Immunol 140: 558–563Google Scholar
  84. Wegener A-MK, Letourneur F, Hoeveler A, Brocker T, Luton F, Malissen B (1992): The T cell receptor/CD3 complex is composed of at least two autonomous transduction molecules. Cell 68: 83–95CrossRefGoogle Scholar
  85. Weiner GJ, Hillstrom JR (1991): Bispecific anti-idiotype/ anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol 147: 4035–4044Google Scholar
  86. Winter G, Milstein C (1991): Man-made antibodies. Nature 349: 293–299CrossRefGoogle Scholar
  87. Wong JT, Colvin RB (1987): Bispecific monoclonal antibodies: Selective binding and complement fixation to cells that express two different surface antigens. J Immunol 139: 1369–1374Google Scholar
  88. Zarling JM, Moran PA, Grosmarie LS, McClure J, Shriver K, Ledbetter JA (1988): Lysis of cells infected with HIV-1 by human lymphocytes targeted with monoclonal antibody heteroconjugates. J Immunol 140: 2609–2613Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • David M. Segal
  • Carolina R. Jost
  • Andrew J. T. George

There are no affiliations available

Personalised recommendations