Triggering Structures on NK Cells

  • Lewis L. Lanier
  • Joseph H. Phillips


Natural killer (NK) cells are a subpopulation of lymphocytes distinct from both T and B cells (Lanier et al., 1986d). In man, NK cells are identified as lymphocytes with the antigenic phenotype membrane CD3ε , CD16+ and/or CD56+ (Lanier et al., 1986d). In the mouse, NK cells are membrane CD3ε , and in some strains NK1.1+. Unlike T lymphocytes, NK cells do not rearrange T-cell receptor (TCR) α, β, γ, or δ genes (Lanier et al., 1986a, 1986b; Tutt et al., 1986, 1987; Loh et al., 1988). NK cell function and maturation, moreover, is normal in scid mice (Hackett et al., 1986; Tutt et al., 1987), in which the development of T and B lymphocytes is arrested due to a defect in the process necessary for rearrangement of immunoglobulin and T-cell antigen receptor (Bosma et al., 1983; Schuler et al., 1986; Bosma et al., 1991). These observations suggest that NK cells constitute a distinct lineage of lymphocytes, and they indicate that the recombinase mechanisms present in B and T lymphocytes are not required for NK development or function. A relationship between T and NK progenitor cells prior to TCR rearrangement is nonetheless quite possible, given the remarkable similarities in the functional and antigenic phenotypes of these lymphocytes.


Natural Killer Cell Neural Cell Adhesion Molecule Human Natural Killer Cell Peripheral Blood Natural Killer Cell Natural Killer Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann DM, Hogg N, Trowsdale J, Wilkinson D (1989): Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature 338: 512–514Google Scholar
  2. Anasetti C, Hansen JA, Martin PJ, Guralski D, Barbosa JA (1989): Activation of natural killer cells by LFA-3 binding to CD2. Tissue Antigens 33: 73Google Scholar
  3. Anasetti C, Martin PJ, June CH, Hellstrom KE, Ledbetter JA, Rabinovitch PS, Morishita Y, Hellstrom I, Hansen JA (1987): Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fe-receptor (CD16). J Immunol 139: 1772–1779Google Scholar
  4. Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK (1990a): Phagocytosis mediated by three distinct Fcg receptor classes on human leukocytes. J Exp Med 171: 1333–1345Google Scholar
  5. Anderson P, Caligiuri M, O’Brien C, Manley T, Ritz J, Schlossman SF (1990b): Fc7RIII (CD16) is included in the 5 NK receptor complex expressed by human natural killer cells. Proc Nail Acad Sci USA 87: 2274–2278Google Scholar
  6. Anderson P, Caligiuri M, Ritz J, Schlossman SF (1989): CD3-negative natural killer cells express TCR as part of a novel molecular complex. Nature 341: 159–162Google Scholar
  7. Anegon I, Cuturi MC, Trinchieri G, Perussia B (1988): Interaction of Fc receptor (CD 16) ligands induces transcription of interleukin 2 receptors (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med 167: 452–472Google Scholar
  8. Aramburu J, Balboa MA, Izquierdo M, Lopez-Botet M (1991): A novel functional cell surface dimer (Kp43) expressed by natural killer cells and WS TCR+ T lymphocytes II. Modulation of natural killer cytotoxicity by anti-Kp43 monoclonal antibody. J Immunol 147: 714–721Google Scholar
  9. Aramburu J, Balboa MA, Ramirez A, Silva A, Acevedo A, Sanchez-Medrid F, DeLandazuri MO, Lopez-Botet M (1990): A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-y/ S+ T lymphocytes. I. Inhibition of the IL-2 dependent proliferation by anti-Kp43 monoclonal antibody. J Immunol 144: 3238–3247Google Scholar
  10. Ballas ZK, Rasmussen W (1990): NK 1. I + thymocytes: Adult murine CD4-, CD8- thymocytes contain an NK1.1+, CD3+, CD5h’, CD44’, TCR-Vß8 + subset. J Immunol 145: 1039–1045Google Scholar
  11. Bennett M (1987): Biology and genetics of hybrid resistance. Adv Immunol 41: 333–445Google Scholar
  12. Blank U, Ra C, White K, Metzger H, Kinet J-P (1989): Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 337: 187–189Google Scholar
  13. Bockenstedt LK, Goldsmith MA, Dustin M, Olive D, Springer TA, Weiss A (1988): The CD2 ligand LFA-3 activates T cells but depends on the expression and function of the antigen receptor. J Immunol 141: 1904–1911Google Scholar
  14. Bolhuis RLH, Roozemond RC, van de Griend RJ (1986): Induction and blocking of cytolysis in CD2+, CD3 -and CD2+, CD3+ cytotoxic T lymphocytes via CD2 50 kd sheep erythrocyte receptor. J Immunol 136: 3939Google Scholar
  15. Bosma GC, Cluster RP, Bosma MJ (1983): A severe combined immunodeficiency mutation in the mouse. Nature 301: 527–530Google Scholar
  16. Bosma MJ, Carroll AM (1991): The SCID mouse mutant: Definition, characterization, and potential use. Annu Rev Immunol 9: 323–350Google Scholar
  17. Cassatella MA, Angeon I, Cuturi MC, Griskey P, Trinchieri G, Perussia B (1989): Fc7R (CD16) interaction with ligand induces Ca’ mobilization and phosphoinositide turnover in human natural killer cells. Role of Cat+ in Fc7R (CD16)-induced transcription and expression of lymphokine genes. J Exp Med 169: 549–567Google Scholar
  18. Chambers WH, Vujanovic NL, DeLeo AB, Olszowy MW, Herberman RB, Hiserodt JC (1989): Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med 169: 1373–1389Google Scholar
  19. Chan P-Y, Takei F (1989): Molecular cloning and characterization of a novel murine T cell surface antigen, YE1/48. J Immunol 142: 1727–1736Google Scholar
  20. Ciccone E, Colonna M, Viale O. Pende D, Di Donato C, Reinharz D, Amoroso A, Jeannet M, Guardiola J, Moretta A, Spies T, Strominger J, Moretta L (1990): Susceptibility or resistance to lysis by alloreactive natural killer cells is governed by a gene in the human major histocompatibility complex between BF and HLA-B. Proc Natl Acad Sci USA 87: 9794–9797Google Scholar
  21. Ciccone E, Viale O. Pende D, Malnati M, Biassoni R, Melioli G, Moretta A, Long EO, Moretta L (1988): Specific lysis of allogeneic cells after activation of CD3–lymphocytes in mixed lymphocyte culture. J Exp Med 168: 2403–2408Google Scholar
  22. Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM (1987): Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236: 799–806Google Scholar
  23. Dembic Z, Haas W, Weiss S, McCubrey J, Kiefer H, von Boehmer H, Steinmetz M (1986): Transfer of specificity by murine a and ß T-cell receptor genes. Nature 320: 232–238Google Scholar
  24. Dustin ML, Sanders ME, Shaw S, Springer TA (1987): Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med 165: 677–692Google Scholar
  25. Edelman GM (1986): Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann Rev Cell Biol 2: 81–116Google Scholar
  26. Edelman GM (1988): Morphoregulatory molecules. Biochemistry 27: 3533–3543Google Scholar
  27. Fleit HB, Wright SD, Unkeless JC (1982): Human neutrophil Fcy receptor distribution and structure. Proc Natl Acad Sci USA 79: 3275–3279Google Scholar
  28. Frank SJ, Niklinska BB, Orloff DG, Mercep M, Ashwell JD, Klausner RD (1990): Structural mutations of the T cell receptor chain and its role in T cell activation. Science 249: 174–177Google Scholar
  29. Frey JL, Bino T, Kantor RRS, Segal DM, Giardina SL, Roder J, Anderson S, Ortaldo JR (1991): Mechanism of target cell recognition by natural killer cells: Characterization of a novel triggering molecule restricted to CD3 — large granular lymphocytes. J Exp Med 174: 1527–1536Google Scholar
  30. Giorda R, Trucco M (1991): Mouse NKR-Pl: A family of genes selectively coexpressed in adherent lymphokine-activated killer cells. J Immunol 147: 1701–1708Google Scholar
  31. Giorda R, Rudert WA, Vavassori C, Chambers WH, Hiserodt JC, Trucco M (1990): NKR-P1, a signal transduction molecule on natural killer cells. Science 249: 1298–1300Google Scholar
  32. Glimcher L, Shen FW, Cantor H (1977): Identification of a cell-surface antigen selectively expressed on the natural killer cell. J Exp Med 145: 1–9Google Scholar
  33. Graziano RF, Franger MW (1987): FcyRI and FcyRII on monocytes and granulocytes are cytotoxic trigger molecules for tumor cells. J Immunol 139: 3536–3541Google Scholar
  34. Griffin JD, Hercend T, Beveridge R, Schlossman SF (1983): Characterization of an antigen expressed by human natural killer cells. J Immunol 130: 2947–2951Google Scholar
  35. Hackett J, Jr, Bosma GC, Bosma MJ, Bennett M, Kumar V (1986): Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc Natl Acad Sci USA 83: 3427–3431Google Scholar
  36. Harris DT, Jaso-Friedmann L, Devlin RB, Koren HS, Evans DL (1991): Identification of an evolutionary conserved, function-associated molecule on human natural killer cells. Proc Natl Acad Sci USA 88: 3009–3013Google Scholar
  37. Hibbs ML, Selvaraj P, Carpen O, Springer TA, Kuster H, Jouvin M-HE, Kinet J-P (1989): Mechanisms for regulating expression of membrane isoforms of FcyRIII (CDI6). Science 246: 1608–1611Google Scholar
  38. Houchins JP, Yabe T, McSherry C, Bach FH (1991): DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173: 1017–1020Google Scholar
  39. Houchins JP, Yabe T, McSherry C, Miyokawa N, Bach FH (1990): Isolation and characterization of NK cell or NK/T cell-specific cDNA clones. J Mol Cell Immunol 4: 295–306Google Scholar
  40. Huizinga TWJ, Kleijer M, Tetteroo PAT, Roos K, Kr. von dem Borne AEG (1990): Biallelic neutrophil Na-antigen system is associated with a polymorphism on the phospho-inositol-linked Fcy receptor Ill (CD16). Blood 75: 213–217Google Scholar
  41. Huizinga TWJ, van der Schott CE, Jost C, Klaassen R, Kleijer M, Kr. von dem Borne AEG, Roos D, Tetteroo PAT (1988): The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature 333: 667–669Google Scholar
  42. Imboden JB, Bell G. Seaman WE (1991): Characterization of signal-transducing molecules on natural killer cells. Biochem Soc Trans 19: 265–268Google Scholar
  43. Imboden JB, Eriksson EC, McCutcheon M, Reynolds CW, Seaman WE (1989): Identification and characterization of a cell-surface molecule that is selectivity induced on rat lymphokine-activated killer cells. J Immunol 143: 3100–3103Google Scholar
  44. Kamoun M, Martin PJ, Hansen JA, Brown MA, Siakak AW, Nowinski RC (1981): Identification of a human T lymphocyte surface protein associated with the E-rosette receptor. J Exp Med 153: 207–212Google Scholar
  45. Karlhofer FM, Yokoyama WM (1991): Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen: IL-2-activated NK cells possess additional specific stimulation pathways. J Immunol 146: 3662–3673Google Scholar
  46. Koo GC, Peppard JR (1984): Establishment of monoclonal anti-NK1.1 antibody. Hybridoma 3: 301 Koyasu S, Lawton T, Novick D, Recny MA, Siliciano RF, Wallner BP, Reinherz EL (1990): Role of interaction of CD2 molecules with lymphocyte function-associated antigen 3 in T-cell recognition of nominal antigen. Proc Natl Acad Sci USA 87: 2603–2607Google Scholar
  47. Kurosaki T, Ravetch JV (1989): A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of FcyRIII. Nature 342: 805–807Google Scholar
  48. Lanier LL, Chang C, Azuma M, Ruitenberg JJ, Hemperly JJ, Phillips JH (1991): Molecular and functional analysis of human NK cell-associated neural cell adhesion molecule (N-CAM/CD56). J Immunol 146: 4421–4426Google Scholar
  49. Lanier LL, Cwirla S, Federspiel N, Phillips JH (1986a): Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor ß chain genes. J Exp Med 163: 209–214Google Scholar
  50. Lanier LL, Cwirla S, Phillips JH (1986b): Geonomic organization of T cell y genes in human peripheral blood natural killer cells. J Immunol 137: 3375–3377Google Scholar
  51. Lanier LL, Cwirla S, Yu G, Testi R, Phillips JH (1989a): A single amino acid determines phosphatidylinositol-glycan membrane anchoring of a human Fc receptor for IgG (CD16). Science 246: 1611–1613Google Scholar
  52. Lanier LL, Kipps TJ, Phillips JH (1985): Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CDI6/Leu1 l antigen). J Exp Med 162: 2089–2106Google Scholar
  53. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986c): The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136 (12): 4480–4486Google Scholar
  54. Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF (1983): Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-1 l (NK-15) antigens. J Immunol 131: 1789–1796Google Scholar
  55. Lanier LL, Phillips JH, Hackett J, Jr, Tutt M, Kumar V (1986d): Natural killer cells: Definition of a cell type rather than a function. J Immunol 137: 2735–2739Google Scholar
  56. Lanier LL, Phillips JH, Testi R (19896): Membraneanchoring and spontaneous release of CD16 (FcR III) by natural killer cells and granulocytes. Eur J Immunol 19: 775–778Google Scholar
  57. Lanier LL, Ruitenberg JJ, Phillips JH (1988): Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 141: 3478–3485Google Scholar
  58. Lanier LL, Testi R, Bindl J, Phillips JH (1989c): Identity of Leu 19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule (N-CAM). J Exp Med 169: 2233–2238Google Scholar
  59. Lanier LL, Yu G, Phillips JH (1989d): Co-association of CD3: with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342: 803–805Google Scholar
  60. Letourneur O, Kennedy ICS, Brini AT, Ortaldo JR, O’Shea JJ, Kinet J-P (1991): Characterization of the family of dimers associated with Fc receptors (FceRI and FcyRIII). J Immunol 147: 2652–2656Google Scholar
  61. Levisky HI, Golumbek PT, Pardoll DM (1991): The fate of CD4–8–T cell receptor-aß + thymocytes. J Immunol 146: 1113–1117Google Scholar
  62. Ley SC, Davies AA, Druker B, Crumptom MJ (1991): The T cell receptor/CD3 complex and CD2 stimulate the tyrosine phosphorylation of indistinguishable patterns of polypeptides in the human T leukemic cell line Jurkat. Eur J Immunol 21: 2203–2209Google Scholar
  63. Loh EY, Cwirla S, Serafini AT, Phillips JH, Lanier LL (1988): Human T-cell receptor S chain: Genomic organization, diversity, and expression in populations of cells. Proc Natl Acad Sci USA 85: 9714–9718Google Scholar
  64. Meuer SC, Hussey RE, Fabbi M, Fox D, Acuto O, Fitzgerald KA, Hodgdon JC, Protentis JP, Schlossman SF, Reinherz EL (1984): An alternative pathway of T-cell activation: A functional role for the 50kD TI 1 sheep erythrocyte receptor protein. Cell 36: 897–906Google Scholar
  65. Moretta A, Bottino C, Pende D, Tripodi G, Tambussi G, Viale O, Orengo A, Barbaresi M, Merli A, Ciccone E, Moretta L (1990a): Identification of four subsets of human CD3–CD16 + natural killer (NK) cells by the expression of clonally distributed functional surface molecules: Correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med 172: 1589–1998Google Scholar
  66. Moretta A, Tambussi G, Bottino C, Tripodi G, Merli A, Ciccone E, Pantaleo G, Moretta L (1990b): A novel surface antigen expressed by a subset of human CD3 -CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J Exp Med 171: 714Google Scholar
  67. Nagler A, Lanier LL, Cwirla S, Phillips JH (1989): Comparative studies of human FcRIII-positive and negative NK cells. J Immunol 143: 3183–3191Google Scholar
  68. Nakamura T, Takahashi K, Fukazawa T, Koyanagi M, Yokoyama A, Kato H, Yagita H, Okumura K (1990): Relative contribution of CD2 and LFA-1 to murine T and natural killer cell functions. J Immunol 145: 3628–3634Google Scholar
  69. Nakamura T, Takahashi K, Koyanagi M, Yagita H, Okumura K (1991): Activation of a natural killer clone upon target cell binding via CD2. Eur J Immunol 21: 831–834Google Scholar
  70. Niemi EC, Ryan JC, Seaman WE (1991): Mutational lossof NKR-PI from RNK-16 cells is accompanied by loss of cytotoxicity against YAC-1 targets. N Immun Cell Growth Regul 10: 146–147Google Scholar
  71. Orloff DG, Ra C, Frank SJ, Klausner RD, Kinet J-P (1990): Family of disulphide-linked dimers containing the and rl chains of the T-cell receptor and they chain of Fc receptors. Nature 347: 189–191Google Scholar
  72. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM (1989a): Sequences of complementary DNAs that encode the NAI and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest 84: 1688–1691Google Scholar
  73. Ory PA, Clark MR, Talhouk AS, Goldstein IM (1991): Transfected NA 1 and NA2 forms of human neutrophil Fc receptor III exhibit antigenic and structural heterogeneity. Blood 77: 2682–2687Google Scholar
  74. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB (1989b): Characterization of polymorphic forms of Fc receptor III on human neutrophils. J Clin Invest 83: 1676–1681Google Scholar
  75. O’Shea J, Weissman AM, Kennedy ICS, Ortaldo JR (1991): Engagement of the natural killer cell IgG Fc receptor results in tyrosine phosphorylation of the chain. Proc Natl Acad Sci USA 88: 350–354Google Scholar
  76. Paolini R, Jouvin M-H, Kinet J-P (1991): Phosphorylation and dephosphorylation of the high-affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature 353: 855–858Google Scholar
  77. Perussia B, Ravetch JV (1991): FcyRIII (CD16) on human macrophages is a functional product of FcyRIII-2 gene. Eur J Immunol 21: 425–429Google Scholar
  78. Perussia B, Starr S, Abraham S, Fanning V, Trinchieri G (1983): Human natural killer cells analyzed by B73. I, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol 130: 2133–2141Google Scholar
  79. Perussia B, Trinchieri G, Jackson A, Warner NL, Faust J, Rumpold H, Kraft D, Lanier LL (1984). The Fc receptor for IgG on human natural killer cells: Phenotypic, functional, and comparative studies with monoclonal antibodies. J Immunol 133: 180–189Google Scholar
  80. Perussia B, Tutt MM, Qui WQ, Kuziel WA, Tucker PW, Trinchieri G, Bennett M, Ravetch JV, Kumar V (1989): Murine natural killer cells express functional Fcy receptor II encoded by the FcyRs gene. J Exp Med 170: 73–86Google Scholar
  81. Phillips JH, Chang C, Lanier LL (1991): Platelet-induced expression of FcyRIII (CD16) on human monocyte. Eur J Immunol 21: 895–899Google Scholar
  82. Pletz GA, Grundy HO, Lebro RV, Yssel H, Barsh GS, Moore KW (1989): Human FcyRIII: Cloning, expression, and identification of the chromosomal locus of two Fc receptors for IgG. Proc Natl Acad Sci USA 86: 1013–1017Google Scholar
  83. Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV (1990): Organization of the human and mouse low-affinity FcgR genes: Duplication and recombination. Science 248: 732–735Google Scholar
  84. Ra C, Jouvin M-HE, Blank U, Kinet J-P (1989): A macrophage Fey receptor and the mast cell receptor for immunoglobulin E share an identical subunit. Nature 341: 752–754Google Scholar
  85. Ravetch JV, Perussia B (1989): Alternative membrane forms of FcyRIII (CD16) on human natural killer cells and neutrophils: Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 170: 481–497Google Scholar
  86. Robertson MJ, Caligiuri MA, Manley TJ, Levine H, Ritz J (1990): Human natural killer cell adhesion molecules: Differential expression after activation and participation in cytolysis. J Immunol 145: 3194–3201Google Scholar
  87. Rodewald H-R, Arulanandam ARN, Koyasu S, Reinherz EL (1991): The high affinity Fcs receptor y subunit (FceRIy) facilitates T cell receptor expression and antigen/major histocompatibility complex-driven signaling in the absence of CD3í; or CD3q. J Biol Chem 266: 15974–15978Google Scholar
  88. Ryan RC, Niemi EC, Goldfien RD, Hiserodt JC, Seaman WE (1991): NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J Immunol 147: 3244–3250Google Scholar
  89. Salmon JE, Brogle NL, Edberg JC, Kimberly RP (1991): Fcy receptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by Fcy receptor II. J Immunol 146: 997–1004Google Scholar
  90. Samelson LE, O’Shea JJ, Luong H, Ross P, Urdahl KB, Klausner RD, Bluestone J (1987): T cell antigen receptor phosphorylation induced by an anti-receptor antibody. J Immunol 139: 2708–2714Google Scholar
  91. Samelson LE, Patel MD, Weissman AM, Harford JB, Klausner RD (1989): Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell 46: 1083–1090Google Scholar
  92. Scallon BJ, Scigliano E, Freedman VH, Miedel MC, Pan Y-CE, Unkeless JC, Kochan JP (1989): A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms. Proc Natl Acad Sci USA 86: 5079–5083Google Scholar
  93. Schmidt RE, Caulfield JP, Michon J, Hein A, Kamada MM, MacDermott RP, Stevens RL, Ritz J (1988): T11/CD2 activation of cloned human natural killer cells results in increased conjugate formation and exocytosis of cytolytic granules. J Immunol 140: 991–1002Google Scholar
  94. Schmidt RE, Hercend T, Fox DA, Bensussan A, Bartley G, Daley JF, Schlossman SF, Reinherz EL, Ritz J (1985): The role of interleukin 2 and TII E rosette antigen in activation and proliferation of human NK clones. J Immunol 135: 672–678Google Scholar
  95. Schmidt RE, Michon JM, Woronicz J, Schlossman SF, Reinherz EL, Ritz J (1987): Enhancement of natural killer function through activation of the T11 E rosette receptor. J Clin Invest 79: 305–308Google Scholar
  96. Schmidt RE, Murray C, Daley JF, Schlossman SF, Ritz J (1986): A subset of natural killer cells in pheripheral blood displays a mature T cell phenotype. J Exp Med 164: 351–356Google Scholar
  97. Schuler W, Weiler IJ, Schuler A, Phillips RA, Rosenberg N, Mak TW, Kearney JF, Perry RP, Bosma MJ (1986): Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46: 963–972Google Scholar
  98. Scott CF, Boloender S, McIntyre GD, Holldack J, Lambert JM, Venkatesh YP, Morimoto C, Ritz J, Schlossman SF (1989): Activation of human cytolytic cells through CD2/T 11: Comparison of the requirements for the induction and direction of lysis of tumor targets by T cells and NK cells. J Immunol 142: 4105–4112Google Scholar
  99. Seaman WE, Eriksson E, Dobrow R, Imboden JB (1987): Inositol trisphosphate is generated by a rat natural killer cell tumor in response to target cells or to cross-linked monoclonal antibody OX-34: Possible signaling role for the OX-34 determinant during activation by target cells. Proc Natl Acad Sci USA 84: 4239–4243Google Scholar
  100. Seaman WE, Niemi EC, Stark MR, Goldfien RD, Pollock AS, Imboden JB (1991): Molecular cloning of gp42: A cell-surface molecule that is selectively induced on rat natural killer cells by interleukin 2: Glycoplipid membrane anchoring and capacity for transmembrane signaling. J Exp Med 173: 251–260Google Scholar
  101. Selvaraj P, Rosse WF, Silber R, Springer TA (1988): The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 333: 565–567Google Scholar
  102. Sentman CL, Hackett J, Kumar V, Bennett M (1989): Identification of a subset of murine natural killer cells that mediates rejection of Hh-I ° but not Hh-P’ bone marrow grafts. J Exp Med 170: 191–202Google Scholar
  103. Sentman CL, Kumar V, Bennett M (1991): Rejection of bone marrow cell allografts by natural killer cell subsets: 5E6+ cell specificity for Hh-1 determinant 2 shared by H-2° and H-2`. Eur J Immunol 21: 2821–2828Google Scholar
  104. Shaw S, Luce GEG, Quinones R, Gress RE, Springer TA, Sanders ME (1986): Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature 323: 262–264Google Scholar
  105. Siliciano RF, Pratt JC, Schmidt RE, Ritz J, Reinherz EL (1985): Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature 317: 428–430Google Scholar
  106. Simmons D, Seed B (1988): The Fcy receptor of natural killer cells is a phospholipid-linked membrane protein. Nature 333: 568–570Google Scholar
  107. Spruyt LL, Glennie MJ, Beyers AD, Williams AF (1991): Signal transduction by the CD2 antigen in T cells and natural killer cells: Requirement for expression of a functional T cell receptor or binding of antibody Fc to the Fc receptor, FcyRIIIA (CD16). J Exp Med 174: 1407–1415Google Scholar
  108. Sussman JJ, Bonifacino JS, Lippincott-Schwartz J, Weissman AM, Saito T, Klausner RD, Ashwell JD (1988): Failure to synthesize the T cell CD3-C chain: Structure and function of a partial T cell receptor complex. Cell 52: 85–95Google Scholar
  109. Suzuki N, Suzuki T, Engleman EG (1991): Evidence for the involvement of CD56 molecules in alloantigenspecific recognition by human natural killer cells. J Exp Med 173: 1451–1461Google Scholar
  110. Tetteroo PAT, van der Schoot CE, Visser FJ, Bos MJE, von dem Borne AEGK (1987): Three different types of Fey receptors on human leucocytes defined by Workshop antibodies; FeyRow of neutrophils, FcyR10, of K/NK lymphocytes, and FcyRII. In: Leucocyte Typing III. White Cell Differentiation Antigens, McMichael AJ, ed. Oxford: Oxford University Press, pp. 702–706Google Scholar
  111. Ting AT, Einspahr KJ, Abraham RT, Leibson PJ (1991): Fey receptor signal transduction in natural killer cells: Coupling to phospholipase C via a G protein-independent, but tyrosine kinase-dependent pathway. J Immunol 147: 3122–3127Google Scholar
  112. Trinchieri G (1989): Biology of natural killer cells. Ade Immunol 47: 187–376Google Scholar
  113. Trounstine ML, Peitz GA, Yssel H, Huizinga TWJ, Kr. von dem Borne AEG, Spits H, Moore KW (1990): Reactivity of cloned, expressed human FcyRIII isoforms with monoclonal antibodies which distinguish cell-type-specific and allelic forms of FcyRIII. Int Immunol 2: 303–310Google Scholar
  114. Tutt MM, Kuziel WA, Hackett J, Jr, Bennett M, Tucker PW, Kumar V (1986): Murine natural killer cells do not express functional transcripts of the x-, ß-, or y-chain genes of the T cell receptor. J Immunol 137: 2998–3001Google Scholar
  115. Tutt MM, Schuler W, Kuziel WA, Tucker PW, Bennett M, Bosma MJ, Kumar V (1987): T cell receptor genes do not rearrange or express functional transcripts in natural killer cells of.seid mice. J Immunol 138: 2338–2344Google Scholar
  116. van de Griend RJ, Bolhuis RLH, Stoter G, Roozemond RC (1987): Regulation of cytolytic activity in CD3and CD3 + killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J Immunol 138: 3137–3144Google Scholar
  117. van de Velde H, von Hoegen I, Luo W, Parnes JR, Thiele-mans K (1991): The B-cell surface protein CD72/Lyb-2 is the ligand for CD5. Nature 351: 662–665Google Scholar
  118. Vivier E, Morin P, O’Brien C, Druker B, Schlossman SF, Anderson PA (1991a): Tyrosine phosphorylation on the FcyRIII (CD16): l’ complex in human natural killer cells. Induction by antibody dependent cytotoxicity but not by natural killing. J Immunol 146: 206–210Google Scholar
  119. Vivier E, Morin PM, O’Brien C, Schlossman SF, Anderson P (1991b): CD2 is functionally linked to the ’-natural killer receptor complex. Eur J Immunol 21: 1077–1080Google Scholar
  120. Vivier E, Rochet N, Kochan JP, Presky DH, Schlossman SF, Anderson P (1991c): Structural similarity between Fc receptors and T cell receptors: Expression of the y-subset of FcrRI in human T cells, natural killer cells, and thymocytes. J Immunol 147: 4263–4270Google Scholar
  121. Weiss MJ, Daley JF, Hodgdon JC, Reinherz EL (1984): Calcium dependency of antigen-specific (T3-Ti) and alternative (T11) pathways of human T-cell activation. Proc Natl Acad Sci USA 81: 6836–6840Google Scholar
  122. Weissman AM, Hou D, Orloff DG, Modi WS, Seuanez H, O’Brien SJ, Klausner RD (1988): Molecular doing and chromosomal localization of the human T-cell receptor ’ chain: Distinction from the molecular CD3 complex. Proc Natl Acad Sci USA 85: 9709–9713Google Scholar
  123. Welch GR, Wong HL, Wahl SM (1990): Selective induction of FcyRIII on human monocytes by transforming growth factor-ß. J Immunol 144: 3444–3448Google Scholar
  124. Welsh RM (1986): Regulation of virus infections by natural killer cells: A review. Nat Immun Cell Growth Regul 5: 169–199Google Scholar
  125. Werfel T, Uchiechowski P. Tetteroo PAT. Kurrie R. Deicher H, Schmidt RE (1989): Activation of cloned human natural killer cells via FcyRIII. J Immunol 142: 1102–1106Google Scholar
  126. Werner G, von dem Borne AEGK, Bos MJE, Tromp JF, van der Plas-van Dalen CM, Visser FJ, Engelfriet CP, Tetteroo PAT (1986): Localization of the human NAI alloantigen on neutrophil Fey receptors. In: Leucocyte Typing II, Reinherz EL, Haynes BF, Nadler LM, Bernstein ID, eds. New York: Springer-Verlag, p. 109Google Scholar
  127. Wong S, Freeman JD, Kelleher C, Mager D, Takei F (1991): Ly-49 multigene family: New members of a superfamily of type II membrane proteins with lectinlike domains. J Immunol 147: 1417–1423Google Scholar
  128. Yokoyama WM, Jacobs LB, Kanagawa O, Shevach EM and Cohen DI (1989): A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J Immunol 143: 1379–1386Google Scholar
  129. Yokoyama WM, Kehn PJ, Cohen DI, Shevach EM (1990): Chromosomal location of the Ly-49 (Al. YEl/ 48) multigene family: Genetic association with the NK1.1 antigen. J Immunol 145: 2353–2358Google Scholar
  130. Yokoyama WM, Ryan JC, Hunter JJ, Smith HRC, Stark M, Seaman WE (1991): cDNA cloning of mouse NKR-PI and genetic linkage with Ly-49: Identification of a natural killer cell gene complex on mouse chromosome 6. J Immunol 147: 3229–3236Google Scholar
  131. Zegler DL, Hogarth PM, Sears DW (1990): Characterization and expression of an Fey receptor cDNA cloned from rat natural killer cells. Proc Natl Acad Sci USA 87: 3425–3429Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Lewis L. Lanier
  • Joseph H. Phillips

There are no affiliations available

Personalised recommendations