Applications of Autoradiography to Drug Discovery

  • Raymond E. Gibson
  • Holly T. Beauchamp
  • Susan Iversen
  • Barry Everitt
  • James McCulloch
  • Christopher Wallace


Compared to the Nuclear Medicine methodologies described in other chapters of this book, autoradiography is an invasive technique; but, many of the features which define the usefulness of Nuclear Medicine in drug discovery are applicable to autoradiographic techniques. Additionally, autoradiographic studies, both in vitro and in vivo, have been used to characterize the properties of radiolabeled drugs used in nuclear medicine (Huang and Phelps, 1986; Kung et al., 1988a; Kung et al., 1988b; Gibson et al., 1992). Thus, results from autoradiographic studies can be used to adequately define the characteristics of a radiotracer system before embarking upon the more costly, and technically challenging non-invasive imaging study. For example, the imaging of glucose metabolism in man using 2-[18F]fluoro-2-deoxy-D-glucose has relied heavily on ex vivo autoradiographic studies conducted in animals (Kennedy et al., 1975; McCulloch, 1982; Huang and Phelps, 1986). One of the major uses of autoradiography in the pharmaceutical industry is to determine drug disposition (usually Carbon-14 labeled) by sectioning rats (whole body studies) at various times after injection. These studies are required for drug approval in Japan, but are not currently required by the Food and Drug Administration in the United States.


NMDA Receptor Plasma Renin Activity Autoradiographic Study Renin Release Merck Research Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barraclough MA, Jones NF and Marsden CD (1967): Effect of angiotensin on renal function in the rat. Am J Physiol 212: 1153–1157.Google Scholar
  2. Blin J, Denis A, Yamaguchi T, Crouzel C, MacKenzie ET and Baron JC (1991): PET studies of [18F]methyl-MK-801, a potential NMDA receptor complex radioligand. Neurosci Letters 121: 183–186.CrossRefGoogle Scholar
  3. Burns HD, Eng W-S, Gibson RE, Ransom RW, Thorpe H, Fioravanti C, Magill CA and Solomon HF (1989): Synthesis of [I-123]- and [I-125]-(+)-3-Iodo-MK-801: potential radiotracer for SPECT and autoradiographic imaging of the NMDA receptor-ion channel complex. J. Nuc Med 30: 923.Google Scholar
  4. Chang RSL and Lotti VJ (1990): Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Molec Pharmacol 29: 347–351.Google Scholar
  5. Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV Pease LJ, Wong PC, Wexler RR, Johnson AJ and Timmermans PBMWM (1989): Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 163: 284–291.CrossRefGoogle Scholar
  6. Davis JO and Freeman RH (1976): Mechanisms regulating renin release. Physiol Rev 56: 1–56.Google Scholar
  7. Faden AI, Demediuk P, Panter SS and Vink R (1989): The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244: 798–800.CrossRefGoogle Scholar
  8. Ferner RE, Simpson JM and Rawlins MD (1987): Effects of intradermal bradykinin after inhibition of angiotensin converting enzyme. Br Med J 294: 1119–1120.CrossRefGoogle Scholar
  9. Fitzsimmons JT (1980): Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87: 117–167.CrossRefGoogle Scholar
  10. Foster AC, Gill R, Kemp JA and Woodruff GN (1987): Systemic administration of MK-801 prevents N-methyl-d-aspartate-induced neuronal degeneration in rat. Neurosci Let 76: 307–311.CrossRefGoogle Scholar
  11. Gehlert DR, Gackenheimer SL, Reel JK, Lin H and Steinberg MI (1990): Non-peptide angiotensin II receptor antagonists discriminate subtypes of 125I-angiotensin II binding sites in the rat brain. Eur J Pharmacol 187: 123–126.CrossRefGoogle Scholar
  12. Gibson RE, Thorpe HT, Cartwright ME, Frank JD, Schom TW, Bunting PB and Siegl PKS (1991): Angiotensin II receptor subtypes in renal cortex of rats and rhesus monkeys. Am J Physiol 261: F512–F518.Google Scholar
  13. Gibson RE, Burns HD, Thorpe HT, Eng W-s, Ransom R and Solomon H (1992): Autoradiographic Imaging of the In Vivo Binding of (+)-3-[125]Iodo-MK-801 to the NMDA-Receptor/Channel Complex in Rat Brain. Nucl Med Biol 19: 319–326.Google Scholar
  14. Gimenez-Amaya JM and Graybiel AM (1990): Compartmental origins of the striatopallidal projection in the primate. Neurosci 34: 111–126.CrossRefGoogle Scholar
  15. Graybiel AM (1990): Neurotransmitters and neuromodulators in the basal ganglia. TINS 13: 244–254.Google Scholar
  16. Huang S-c and Phelps ME (1986): Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Positron Emission Tomography and Autoradiography, Phepls MW, Mazziota JC and Schelbert HR, eds. New York: Raven Press.Google Scholar
  17. Kennedy C, Des Roseris M, Reivich M, Sharp F, Jehle JW and Sokoloff L (1975): Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science 187: 850–853.CrossRefGoogle Scholar
  18. Kuhar MJ (1986): Quantitative Receptor Autoradiography: An Overview. In: Quantitative Receptor Autoradiography, Boast CA, Snowhill EW and Alter CA, eds. New York: Alan R Liss, Inc.Google Scholar
  19. Kung HF, Guo Y-Z, Billings JJ, Xu X, Mach RH, Blau M and Ackerman R (1988a): Preparation and biodistribution of [125I]IBZM: A potential CNS D-2 dopamine receptor imaging agent. Nucl Med Biol 15: 195–201.Google Scholar
  20. Kung HF, Billings JJ, Guo Y-Z and Mach RH (1988b): Comparison of in vivo D-2 dopamine receptor binding of IBZM and NMSP in rat brain. Nucl Med Biol 15: 203–208.Google Scholar
  21. Lear JL (1986): Principles of single and multiple radionuclide autoradiography. In: Positron Emission Tomography and Autoradiography, Phelps MW, Mazziota JC and Schelbert HR, eds. New York: Raven Press.Google Scholar
  22. Levens LG, Peach MJ and Carey RM (1980): Role of the intrarenal renin-angiotensin system in the control of renal function. Circ Res 48: 157–167.Google Scholar
  23. Long RE, Unger T, Rascher N and Garten D (1983): Brain angiotensin. In: Handbook of Psychopharmacology, Vol 16, Iversen L, Iversen S and Snyder S, eds. New York: Plenum Publishing Corp.Google Scholar
  24. McCulloch J (1982): Mapping functional alterations in the CNS with [14C]deoxyglucose. In: Handbook of Psychopharmacology, Vol 15, Iversen L, Iversen S and Snyder S, eds. New York: Plenum Publishing Corp.Google Scholar
  25. Meldrum B (1985): Excitatory amino acids and anoxic-ischemic brain damage. Trends Neurosci 8:47–48.CrossRefGoogle Scholar
  26. Mendelsohn FAO, Millan M, Quirion R, Aquilera RG, Chou S-T and Catt KJ (1987): Localization of angiotensin II receptors in rat and monkey kidney by in vitro autoradiography. Kidney Int 31: S40–S44.Google Scholar
  27. Millan MA, Jacobwitz DM, Catt KJ and Agvilera G (1991): Distribution of angiotensin II receptors in the brain of nonhuman primates. Peptides, 11:342–253.Google Scholar
  28. Navar LG and Langford HG (1974): Effects of angiotensin on the renal circulation. In: Angiotensin, Page IH, Allman D and Bumpus FM, eds. New York: Springer-Verlag.Google Scholar
  29. Navar LG and Rosivall L (1984): Contribution of the renin-angiotensin system to the control of intrarenal hemodynamics. Kidney Int 25: 857–868.CrossRefGoogle Scholar
  30. Ozyurt E, Graham DI, Woodruff GN and McCulloch J (1988): Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in cat. J. Cereb Blood Flow Metab 8: 138–143.CrossRefGoogle Scholar
  31. Ransom RW, Eng W, Burns HD, Gibson RE and Solomon HF (1990): (+)-3-[125I]Iodo-MK-801: Synthesis and characterization of binding to the N-methyl-D-aspartate receptor complex. Life Sci 46: 1103–1110.Google Scholar
  32. Rothman SM and Olney JW (1986): Glutamate and the pathophysiology of hypoxic ischemic brain damage. Ann Neurol 19: 105–111.CrossRefGoogle Scholar
  33. Rowe BP, Grove KL, Saylor DL and Speth RC (1990): Angiotensin II receptor subtypes in the rat brain. Eur J Pharmacol 186: 339–342.CrossRefGoogle Scholar
  34. Seldon NRW, Robbins TW and Everitt BJ (1990): Enhanced behavioral conditioning to context and imparied behavioral and neuroendocrine responses to conditional stimuli following ceruleocortical noradrenergic lesions: support for an attentional hypothesis of central noradrenergic function. J Neurosci 10: 531–539.Google Scholar
  35. Slatter EE, Merrill DD, Guess HA, Roylance PJ, Cooper WD, Inman WHW and Ewan PW (1988): Clinical profile of angioedema associated with angiotensin-converting enzyme inhibition. J. Am Med Assoc 260: 967–970.CrossRefGoogle Scholar
  36. Wamsley JK, Herblin WF, Alburges ME and Hunt M (1990): Evidence for the presence of angiotensin II-type 1 receptors in brain. Brain Res Bull 25: 397–400.CrossRefGoogle Scholar
  37. Wong DF, Burns HD, Solomon HF, Dannals RF, Villemagne V, Goldman S, Young T, Eng W, Ravert HT, Wilson AA, Gibson RE, Iversen L, Guilarte T and Wagner HN Jr (1989): Imaging of NMDA receptor sites with 8-[C-11]Methoxy-MK-801 in vivo by PET. J. Nucl Med 30: 741.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Raymond E. Gibson
    • 1
  • Holly T. Beauchamp
    • 1
  • Susan Iversen
    • 2
  • Barry Everitt
    • 3
  • James McCulloch
    • 4
  • Christopher Wallace
    • 4
  1. 1.RadiopharmacologyMerck Research LaboratoriesUSA
  2. 2.Merck Research LaboratoriesNeuroscience Research CenterUSA
  3. 3.Department of AnatomyCambridge UniversityUK
  4. 4.Wellcome Surgical InstituteUniversity of GlasgowUk

Personalised recommendations