Advertisement

The Design of Site-Directed Radiopharmaceuticals for Use in Drug Discovery

  • William C. Eckelman
  • Raymond E. Gibson

Abstract

The application of Nuclear Medicine technologies to drug discovery can be divided into two approaches: 1) the use of currently available radiopharmaceuticals to determine the presence of either a desired or unwanted physiological effect or 2) the ability to determine the interaction of the drug with a desired target (e.g., receptor or enzyme) in a specific organ. The first of these is described in Chapters 9, 15 and 16 of this book. Although drugs can be labeled with either positron emitting or single photon emitting nuclides, the selection of the drug to be labeled and the validation of the radiolabeled drug as one providing the desired information is still problematic. An entire field of basic research in Nuclear Medicine involving receptor binding radiotracers has grown since 1970, but many aspects of radioligand design remain empirical.

Keywords

Positron Emission Tomography Affinity Constant Cereb Blood Flow Sigma Receptor Receptor Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronstam RS (1982): Receptor Binding Studies: General considerations. In: Receptor Binding Radiotracers Vol 1, Eckelman WC, ed. Boca Raton: CRC Press, Inc.Google Scholar
  2. Atkins FB and Goodenough DJ (1982): Simulated uptake ratio requirements for spherical lesions imaged with a conventional scintillation camera. In: Receptor Binding Radiotracers Vol 2, Eckelman WC, ed. Boca Raton: CRC Press, Inc.Google Scholar
  3. Bjornerheim R, Golf S and Hansson V (1991): Specific non-beta-adrenergic binding sites for [125I]Iodocyanopindolol in myocardial membrane preparations: a comparative study between human, rat, and porcine hearts. Cardiovasc Res 25: 764–773.CrossRefGoogle Scholar
  4. Burns HD, Eng W-s, Dannals RF, Wong DF, Guilarte TR, Wilson AA, Ravert HT, Gibson RE, Britcher SF, Frost JJ, Wagner HN Jr and Solomon HF (1989): Design, synthesis and preliminary evaluation of (+)-[C11]-8-Methoxy-MK-801: A potential radiotracer for NMDA receptor imaging via PET. J Nucl Med 30: 930.Google Scholar
  5. Contreras PC, Quirion R, Gehlert DR, Contreras ML and O’Donohue TL (1987): Autoradiographic distribution of non-dopaminergic binding sites labeled by [3H]haloperidol in rat brain. Neurosci Lett 75: 133–140.CrossRefGoogle Scholar
  6. Counsell RE, Ranade VV, Kulkarni PG and Afiatpour PJ (1973): Potential organ or tumor-imaging agents. 12. Esters of 19-radioiodinated cholesterol. J Nucl Med 14: 777–780.Google Scholar
  7. Delforge J, Syrota A, Lançon J-P, Nakajima K, Loc’h C, Janie M, Vallois J-M, Cayla J and Crouzel C (1991): Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177 and a new graphical method. J Nucl Med 32: 739–748.Google Scholar
  8. DiZio JP, Anderson CJ, Davison A, Erhardt GJ, Carlson KE, Welch MJ and Katzenellenbogen JA (1992): Technetium- and rhenium-labeled progestins: synthesis, receptor binding and in vivo distribution of an 11β-subtituted progestin labeled with technetium-99 and rhenium-186. J. Nucl Med 33: 558–569.Google Scholar
  9. Farrow JT and O’Brien RD (1973): Binding of Atropine and Muscarone to rat brain fractions and its relation to the acetylcholine receptor. Mol Pharmacol 9: 33–40.Google Scholar
  10. Eckelman WC, Reba RC, Gibson RE, Rzeszotarski WJ, Vieras F, Mazaitis JK and Francis B (1979): Receptor binding radiotracers: a class of potential radiopharmaceuticals. J. Nucl Med 20: 350–357.Google Scholar
  11. Eckelman WC, Gibson RE, Vieras F, Rzeszotarski WJ, Francis B and Reba RC (1980): In vivo receptor binding of iodinated beta adrenoceptor blockers. J. Nucl Med 21: 436–442.Google Scholar
  12. Eckelman WC (1982): Receptor-Specific radiopharmaceuticals. In: Emission Computed Tomography, Ell PJ and Holman BL, eds. Oxford: Oxford University Press.Google Scholar
  13. Eckelman WC, Grissom M, Conklin J, Rzeszotarski WJ, Gibson RE, Francis B, Jagoda E, Eng R and Reba RC (1984): In vivo competition studies with analogues of quinuclidinyl benzilate. J. Pharm Sci 73: 529–533.CrossRefGoogle Scholar
  14. Eckelman WC (1992a): The testing of putative receptor binding radiotracers in vivo. In: Radiopharmaceuticals and brain pathology with PET and SPECT, Diksic M and Reba RC eds. Boca Raton: CRC Press.Google Scholar
  15. Eckelman WC (1992b): The development of single-photon emitting, receptor-binding radiotracers. In: The Chemistry and Pharmacology of Radiopharmaceuticals, Nunn A, ed. New York: Marcel Dekker Inc.Google Scholar
  16. Francis B, Eckelman WC, Grissom MP, Gibson RE and Reba RC (1982): The use of tritium labeled compounds to develop gamma-emitting receptor-binding radiotracers. Int J Nucl Med Biol 9: 173–179.CrossRefGoogle Scholar
  17. Frey KA, Koeppe RA, Mulholland GK and Kuhl DE (1990): Quantitation of regional cerebral muscarinic receptors in human brain with the use of [C-11]tropanyl benzilate and positron emission tomography. J Nucl Med 31: 885.Google Scholar
  18. Frey KA, Koeppe RA, Mulholland GK, Jewett D, Hichwa R, Ehrenkaufer RLE, Carey JE, Wieland DM, Kuhl DE and Agranoff BW (1992): In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab 12: 147–154.CrossRefGoogle Scholar
  19. Frost JJ and Wagner HN Jr (1984): Kinetics of binding to opiate receptors in vivo predicted from in vitro parameters. Brain Res. 305: 1–11.CrossRefGoogle Scholar
  20. Frost JJ, Mayberg HS, Sadzot B, Dannals RF, Lever JR, Ravert HT, Wilson AA, Wagner HN Jr and Links JM (1990): Comparison of [C-11]diprenorphine and [C-11]carfentanil binding to opiate receptors in humans by positron emission tomography. J. Cereb Blood Flow Metab 10:484–492.CrossRefGoogle Scholar
  21. Gibson RE (1982): Quantitative changes in receptor concentration as a function of disease. In: Receptor Binding Radiotracers Vol. II, Eckelman WC, ed. Boca Raton: CRC Press, Inc.Google Scholar
  22. Gibson RE, Rzeszotarski WJ, Eckelman WC, Jagoda EM, Weckstein DJ and Reba R (1983): Difference in the affinities of muscarinic acetylcholine receptor antagonists for brain and heart receptors. Biochem Pharmacol 32: 1851–1856.CrossRefGoogle Scholar
  23. Gibson RE, Weckstein DJ, Jagoda EM, Rzeszotarski WJ, Reba RC and Eckelman WC (1984): The characteristics of I-125 QNB and H-3 QNB in vivo and in vitro. J Nucl Med 25: 214–222.Google Scholar
  24. Gitler MS, Zeeberg BR and Reba RC (1992): In vivo muscarinic receptor binding: Pharmacokinetic sensitivity of [I-125]IQNB localization within different regions of the rat brain. J. Nucl Med 33: 883.Google Scholar
  25. Goodenough DJ and Atkins FB (1988): Theoretical limitation of tumor imaging. In: Radiolabeled Monoclonal Antibodies for Imaging and Therapy, Srivastiva SC, ed. New York: Plenum Publishing.Google Scholar
  26. Hertal C, Muller P, Portenier M and Stachelin M (1983): Determination of the desensitization of β-adrenergic receptors by [3H]CGP 12177. Biochem J 216: 669–674.Google Scholar
  27. Hochberg RB (1979): Iodine-125-labelled estradiol: a gamma-emitting analogue of estradiol that binds to the estrogen receptor. Science 205:1138–1140.CrossRefGoogle Scholar
  28. Jensen EV and Jacobson HI (1962): Basic guides to the mechanism of estrogen action. Recent Prog Horm Res 18: 387–408.Google Scholar
  29. Jiang V, Gibson RE, Rzeszotarski WJ, Eckelman WC and Reba RC (1978): Radio-iodinated derivatives of beta adrenoceptor blockers for myocardial imaging. J Nucl Med 19: 918–924.Google Scholar
  30. Kabalka GW and Varma RS (1989): The synthesis of radiolabeled compounds via organometallic intermediates. Tetrahedron 21: 6601–6621.CrossRefGoogle Scholar
  31. Katzenellenbogen JA, Hsiung HM, Carlson KE, McGuire WL, Kraay RJ and Katzenellenbogen BS (1975): Characterization of the binding and estrogenic activity of iodinated hexestrol derivatives in vitro and in vivo. Biochem 14: 1742–1750.CrossRefGoogle Scholar
  32. Katzenellenbogen JA (1981): The development of gamma-emitting hormone analogs as imaging agents for receptor-positive tumors. In: The Prostatic Cell: Stucture and Function, Murphy GP, Sandberg AA and Karr JP, eds. New York: Alan R. Liss, Inc.Google Scholar
  33. Katzenellenbogen JA, Heiman DF, Carlson KE and Lloyd JE (1981): In vitro and in vivo steroid receptor assays in the design of estrogen radiopharmaceuticals. In: Receptor Binding Radiotracers Vol I, Eckelman WC, ed. Boca Raton: CRC Press.Google Scholar
  34. Kennedy C (1991): At three score and ten. J. Cereb Blood Flow Metab 11:885–889.CrossRefGoogle Scholar
  35. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA and Welch MJ (1984): Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25: 1212–1221.Google Scholar
  36. Kiesewetter DO, Finn RP, Rice KC and Monn JA (1990): Synthesis of [11C]labeled (±)-5-methyl-10,11-dihydro-5H-dibenzo(8,d)cyclo-heptene-5,10-imine (± [11C]MK-801). Int J Radiat Appl Instr (Part A) 41: 139–142.CrossRefGoogle Scholar
  37. Kilbourne M (1990): Radiotracers for PET studies of neurotransmitter binding sites: design considerations in vivo imaging of neurotransmitter functions. In: Brain, Heart and Tumors, Kuhl D, ed. Washington, DC: American College of Nuclear Physicians.Google Scholar
  38. Komai T, Eckelman WC, Johnsonbaugh RE, Mazaitis A, Kubota H and Reba RC (1977): Derivatives for the external localization of estrogen dependent malignancy. J Nucl Med 18: 360–366.Google Scholar
  39. Landau WH, Freygang WH, Rowland LP, Sokoloff L and Kety SS (1955): The local circulation in the living brain: values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc 80: 125–129.Google Scholar
  40. Lever SZ, Burns HD, Kervitsky TM, Goldfart) HW, Woo DV, Wong DF, Epps LA, Kramer AV and Wagner HN Jr (1985): Design, preparation and biodistribution of a technetium-99m triaminedithiol complex to assess regional cerebral blood flow. J Nucl Med 26: 1287–1294.Google Scholar
  41. Logan J, Dewey SL, Shiue C-Y, Fowler JS, Wolf AP, Christman DR, Bendriem B and Volkow N (1989): Kinetic analysis of [18F]haloperidol binding in baboon and human brain. J. Nucl Med 30: 898.Google Scholar
  42. Mazatis JK, Gibson RE, Komai T, Eckelman WC, Francis B and Reba RC (1980): Radioiodinated estrogen derivatives. J Nucl Med 21: 142–146.Google Scholar
  43. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH and Katzenellenbogen JA (1988): Breast Cancer: PET imaging of estrogen receptors. Radiol 169: 45–48.Google Scholar
  44. Mulholland GK, Jewett DM, Otto CA, Kilbourn MR, Sherman PS and Kuhl DE (1988): Synthesis and regional brain distribution of [C-11]N-mmethyl-4-piperidyl benzilate ([C-11]NMPB) in the rat. J. Nucl Med 29: 373–379.Google Scholar
  45. Muller-Gartner HW, Wilson AA, Dannais RF, Wagner HN Jr and Frost JJ (1992): Imaging muscarinic cholinergic receptors in human brain in vivo with SPECT, [123I] 4-iododexetimide and [123I]levetimide. J. Cereb Blood Flow Metab 12: 562–570.CrossRefGoogle Scholar
  46. Nakatsuka I, Ferreira NL, Eckelman WC, Francis BE, Rzeszotarski WJ, Gibson RE, Jagoda EM and Reba RC (1984): Synthesis and evaluation of (17α,20E)-21-[125I]lodo-19-norpregna-l,3,5(10),20-tetraene-3,17-diol and (17α,20E)-21[125-l]lodo-11β-methoxy-19-norpregna-l,3,5(10),20-tetraene-3,17-diol (17α-(iodovinyl)estradiol derivatives) as high specific activity potential radiopharmaceuticals. J Med Chem 27:1287–1291.CrossRefGoogle Scholar
  47. Nunn AD, Feld TA and Treher EN (1987): Boronic acid adducts of technetium-99m dioxime complexes. US Patent No. 4705849, Nov. 10.Google Scholar
  48. Parascandola J (1986): The development of receptor theory in discoveries in pharmacology. In: Pharmacological Methods, Receptors & Chemotherapy, Parnham MJ and Bruinvels J, eds. Elsevier Science Publishers B.V.Google Scholar
  49. Paton WDM and Rang HP (1966): The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig ileum in relation to acetylcholine receptors. Proc Roy Soc Ser B Biol Sci 163: 2–44.Google Scholar
  50. Pomper MG, VanBrocklin H, Thieme AM, Thomas RD, Kiesewetter DO, Carlson KE, Mathias CJ, Welch MJ and Katzenellenbogen JA (1990): 11β-Methoxy-, 11β-ethyl- and 17α-ethynyl-subtituted 16α-fluoroestradiols: Receptor-based imaging agents with enhanced uptake efficiency and selectivity. J Med Chem 33: 3143–3155.Google Scholar
  51. Prenant C, Barre L and Crouzel C (1989): Syntehsis of [11C]-3-quinuclidinyl benzilate (QNB). J lablled Compd Radiopharm 27: 1257–1265.CrossRefGoogle Scholar
  52. Ransom RW and Stec NL (1988): Cooperative modulation of [H-3]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by 1-glutamate, glycine and polyamines. J Neurochem 51: 830–836.CrossRefGoogle Scholar
  53. Ransom RW, Eng W-s, Burns HD, Gibson RE and Solomon HF (1990): (+)-3-[123I]Iodo-MK-801: Synthesis and characterization of binding to the N-methyl-D-aspartate receptor complex. Life Sci 46: 1103–1110.CrossRefGoogle Scholar
  54. Reivich M, Sano N and Sokoloff L (1971): Development of an autoradiographic method for the determination of regional glucose consumption. In: Brain and Blood Flow, Ross-Russell RW, ed. London: Pitman.Google Scholar
  55. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Cassella V, Fowler J, Hoffman E, Alavi A, Som P and Sokoloff L (1979): The [18F]fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137.Google Scholar
  56. Rzeszotarski WJ, Gibson RE, Eckelman WC, Simms DA, Jagoda EM, Ferreira NL and Reba RC (1982): Analogs of 3-Quinuclidinyl Benzilate. J Med Chem 25: 1103–1106.CrossRefGoogle Scholar
  57. Scatchard G (1949): The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672.CrossRefGoogle Scholar
  58. Sisson JC, Wieland DM, Koeppe RA, Normolle D, Frey KA, Bolgos G, Johnson J Van Dort ME and Gildersleeve DL (1991): Scintigraphic portrayal of beta receptors in the heart. J Nucl Med 32: 1399–1407.Google Scholar
  59. Stöcklin G (1992): Tracers for metabolic imaging of brain and heart. Radiochemistry and radiopharmacology. Eur J Nucl Med 19: 527–551.CrossRefGoogle Scholar
  60. Troutner DE, Simon J, Ketring AR, Volkert WA and Holmes RA (1980): Complexing 99mTc with cyclam. J Nucl Med 21: 443–448.Google Scholar
  61. Vera DR, Krohn KA, Stadalnik RC and Sheibe PO (1984): [99mTc]Galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding. J Nucl Med 25:779–787.Google Scholar
  62. Wagner HN Jr. (1982): Introduction: The role of receptors in disease. In: Receptor Binding Radiotracers Vol II, Eckelman WC, ed. Boca Raton: CRC Press, Inc.Google Scholar
  63. Wagner HN Jr, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV and Kuhar MJ (1983): Imaging dopamine receptors in human brain by positron tomography. Science 221: 1264–1266.CrossRefGoogle Scholar
  64. Wilson AA, Dannals RF, Ravert HT, Frost JJ and Wagner HN Jr (1989): Synthesis and biological evaluation of [125I]- and [123I]-4-Iododexetimide, a potent muscarinic cholinergic receptor antagonist. J Med Chem 32: 1057–1062.CrossRefGoogle Scholar
  65. Wong DF, Burns HD, Solomon HF, Dannals RF, Villemagne V, Goldman S, Young T, Eng W, Ravert HT, Wilson AA, Gibson RE, Iversen L, Guilarte T and Wagne HN Jr (1989): Imaging of NMDA Receptor Sites with 8-[C-11]Methoxy-MK-801 in vivo by PET. J Nucl Med 30: 741.Google Scholar
  66. Wong DF, Gibson R, Burns HD, Dannals RF, Shaya E, London ED, Brenner N, Wilson AA, Ravert HT, Chen C, Minkin E and Wagner HN Jr (1991): In vivo imaging of signa receptors in primate brain. J Nucl Med 32: 1071.Google Scholar
  67. Yamamura HI and Snyder SH (1974): Muscarinic cholinergic binding in rat brain. Proc Nat Acad Sci 71: 1725–1729.CrossRefGoogle Scholar
  68. Yokoyama A, Terauchi Y, Horiuchi K, Tanaka H, Odori T, Monta R, Mori T and Torijuka K (1976): Technetium-99m-kethoxal-bis(thiosemicarbazone), an uncharged complex with a tetravalent 99mTc state and its excretion into bile. J Nucl Med 17: 816–819.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • William C. Eckelman
    • 1
  • Raymond E. Gibson
    • 2
  1. 1.PET DepartmentNational Institutes of HealthUSA
  2. 2.Radiopharmacology DepartmentMerck Research LaboratoriesUSA

Personalised recommendations