Single Photon, Gamma Emitting Radiotracers for Use in Imaging

  • H. Donald Burns
  • Kwamena E. Baidoo
  • Alan A. Wilson


Non-invasive nuclear imaging techniques are beginning to gain substantial acceptance in pharmaceutical research. Drug candidates can be studied using isotopically labeled compounds (primarily Carbon-11 or Fluorine-18) and Positron Emission Tomography (PET) imaging to obtain information on drug absorption, distribution, metabolism and elimination. Imaging studies in humans with these labeled drugs or drug candidates can be used to compliment information obtained using Tritium and Carbon-14 labeled compounds in animals. Although imaging studies of this type are complicated by a number of factors, such as limitations imposed by the short half-life of Carbon-11 or the need to make corrections for the possible presence of labeled metabolites in tissues, if designed carefully, this type of study can provide valuable information on the kinetics of a drug in the target tissue or accumulation of the drug in other tissues (suggesting potential toxic side effects in that tissue). They can also be used to evaluate the effect that factors such as formulation and route of administration, have on the biodistribution of a drug. This type of study, however, is limited to the use of short-lived, positron emitting radionuclides at suitably equipped PET centers (see Chapter 4).


Single Photon Emission Compute Tomographic Single Photon Emission Compute Tomographic Imaging Dynamic Single Photon Emission Compute Tomographic Single Photon Emission Compute Tomographic Camera Quinuclidinyl Benzilate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams MJ, Juweid M, Tarkate CI, Schwartz DA, Hauser MM, Gaul FE, Fuccello AJ, Rubin RH, Strauss HW and Fischman AJ (1990): Technetium-99m-human polyclonal antibody labeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 31: 2022–2028.Google Scholar
  2. Arano Y, Yokoyama A, Furukana T, Horiuchi K, Yahata T, Saji H., Sakahara H, Nakashima T, Koizumi M, Endo K and Torizuka K (1987): Technetium-99m labeled monoclonal antibody with preserved immunoreactivity and high in vivo stability. J Nucl Med 28: 1027–1033.Google Scholar
  3. Azizaian H, Eaborn C and Pidcock A (1981): Synthesis of organotrialkylstannanes. The reaction between organic halides and hexaalkyldistannes in the presence of palladium complexes. J Organomet Chem 215:49–58.Google Scholar
  4. Baidoo KE and Lever SZ (1990): Synthesis of a versatile presursor to technetium and rhenium complexes. Tetrahedron Lett 31: 5701–5704.Google Scholar
  5. Baidoo KE, Scheffel U and Lever SZ(1990): Technetium-99m labeling of proteins: initial evaluation of a novel diaminedithiol bifunctional chelating agent. Cancer Res 50 (Suppl.): 799s–803s.Google Scholar
  6. Baldwin R (1986): Chemistry of radioiodine. Appl Radiat Isot Int J Radiat Appl Instrum (Part A) 37: 817–821.Google Scholar
  7. Biersack HJ, Linke D, Brassel F, Reichmann K, Kurthen M, Durwen HF, Reuter BM, Wappenschmidt J and Stefan H (1987): Technetium-99m HM-PAO brain SPECT in epileptic patients before and during unilateral hemisphere anesthesia (Wada test): report of three cases. J Nucl Med 28: 1763–1767.Google Scholar
  8. Billings JJ, Kung M-P, Chumpradit S, Mozley D, Alavi A and Kung HF (1992): Characterization of radioiodinated TISCH: A high affinity and selective ligand for mapping CNS D1 dopamine receptor. J Neurochem 58: 227–236.Google Scholar
  9. Bomanji J, Moyes J, Huneida AH, Solanki K, Hawkins L, Nimmon CC, Kingston JE and Britton KE (1991): Does cerebral uptake of radiolabeled MIBG represent adrenergic receptors. J Nucl Med 32: 992.Google Scholar
  10. Brandt KD and Johnson DK (1992): Strudture-function relationships in indium-111 radioimmunoconjugates. Bioconjugate Chem 3: 118–125.Google Scholar
  11. Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Estaban J, Simpson D and Colcher D (1986): Synthesis of 1-p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor imaging studies. Inorg Chem 25: 2772–2781.Google Scholar
  12. Britton KE, Granowski M and Mather SJ (1991): Radiolabelled antibodies in oncology. I. Technical aspects. Nucl Med Commun 12: 65–76.Google Scholar
  13. Cheesman EH, Blanchette MA, Ganey MV, Maheu EJ, Miller SJ and Watson AD (1988): Technetium-99m ECD: Ester derivatized diamine-dithiol Tc complexes for imaging brain perfusion. J Nucl Med 29: 788.Google Scholar
  14. Chumpradit S, Billings J, Kung M, Pan S and Kung H (1989): An improved CNS D-l dopamine receptor imaging ligand: [123I](±)FISCH. J Nucl Med 30: 803.Google Scholar
  15. Clanton JA, Depaulis T, Schmidt DE, Ansari MS, Manning RG, Baldwin RM and Kessler RM (1991): Preparation of [I-123]-Epidepride and [I-125]Epidepride — a dopamine D-2 receptor antagonist radioligand. J Labelled Compd Radiopharm 29: 745–751.Google Scholar
  16. Coenen H, Moerlein S and Stöcklin G (1983): No carrier added radiohalogenation methods with heavy halogens. Radiochim Acta 34: 47–68.Google Scholar
  17. Cole WC, DeNardo SJ, Meares CF, McCall MJ, DeNardo GL, Epstein AL, O’Brien HA and Moi MK (1987): Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 28: 83–90.Google Scholar
  18. Danpure HJ, Osman S and Brady F (1982): The labeling of blood cells in plasma with Indium-111 tropolonate. Br J Radiol 55: 247–249.Google Scholar
  19. Danpure HJ and Osman S (1986): The importance of radiolabeling human granulocytes with [111In]tropolonate or [111In]2-mercaptopyridine-N-oxide in plasma containing acid-citrate-dextrose. Br J Radiol 59: 907–910.Google Scholar
  20. Danpure HJ and Osman S (1989): Radiolabeling human leukocytes and platelets for clinical studies. In: Radiopharmaceuticals: Using radioactive compounds in pharmaceutics and medicine, Theobald AE, ed. Chichester: Ellis Horwood Ltd.Google Scholar
  21. Davison A, Jones A and Abrams M J (1981): New 2,2-bipyridine and 1,10-phenanthroline oxohalide complexes of Tc(VII) and Tc(V). Inorg Chem 20: 4300–4302.Google Scholar
  22. Denays R, Tondeur M, Foulon M, Verstraeten F, Ham H, Piepsz A and Noel P (1989): Regional brain blood flow in congenital dysphasia: Studies with technetium-99m HM-PAO SPECT. J Nucl Med 30: 1825–1829.Google Scholar
  23. Deutsch E, Elder RC, LAnge BA, Vaal MJ and Lay DG (1976): Structural characterization of a bridged 99mTc-Sn-dimethylglyoxime complex: Implications for the chemistry of 99mTc radiopharmaceuticals prepared by the Sn(II) reduction of pertechnetate. Proc Natl Acad Sci 73: 4287–4289.Google Scholar
  24. Dewanjee MK, Rao SA and Didisheim P (1981): Indium-111 tropolone, a new, high affinity label. Preparation and evaluation of labeling parameters. J Nucl Med 22: 981–987.Google Scholar
  25. DiZio JP, Anderson CJ, Davison A, Ehrhardt GJ, Carlson KE, Welch MJ and Katzenellenbogen JA (1992): Technetium and rhenium-labeled progestins: Synthesis, receptor binding and in vivo distribution of an 11-β-substituted progestin labeled with technetium-99 and rhenium-186. J Nucl Med 33: 558–569.Google Scholar
  26. Drane WE, Strickland P and Zmuda S (1989): Regional cerebral localization of SQ 32097 (BATO agent) in normal volunteers: Evaluation with dynamic SPECT using a dedicated, multi-headed SPECT device. J Nucl Med 30: lAb.Google Scholar
  27. Eaborn C (1975): Cleavage of aryl-silicon and related bonds by electrophiles. J Organomet Chem 100: 43–57.Google Scholar
  28. Eckelman WC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, Budinger T, Conklin JJ, Eng R and Grissom MP (1984): External imaging of cerebral muscarinic acetylcholine receptors. Science 223: 291–293.Google Scholar
  29. Eckelman WC and Steigman J (1991): Direct labeling with 99mTc. Nucl Med Biol 18: 3–7.Google Scholar
  30. Ell PJ, Hocknell JML, Jarrit PH, Cullum I, Lui D, Campos-Costa D, Nowotnik DP, Pickett RD, Canning LR and Neirinckx RD (1985): A 99mTc-labelled radiotracer for the investigation of cerebral vascular disease. Nucl Med Commun 6:437–441.Google Scholar
  31. Epps LA, Burns HD, Lever SZ, Goldfarb H and Wagner HN Jr (1987): Brain imaging agents: Synthesis and characterization of (N-piperidinylethyl)-hexamethyl diaminodithiolate oxo technetium(V) complexes. Appl Radiat Isot Int. J. Radiat. Appl. Instrum. (Part A) 38: 361–36.Google Scholar
  32. Epps LA (1984): The chemistry of neutral, lipid soluble technetium(V) complexes of aminoalcohols and aminothiols. Ph.D. Thesis, The Johns Hopkins University, Baltimore.Google Scholar
  33. Fleary RF (1968): 99mTc labeled EDTA for renal scanning. Aust Radiol 12: 265–270.Google Scholar
  34. Fly R (1977): I-123: Less radiation, better results. Applied Radiol 6: 177–179.Google Scholar
  35. Forster AM, Storey AE, Archer CM, Nagle KR, Booker FS, Edwards PG, Gill HK, Kelly JD and McPartlin M (1992): Structural characterization of the new myocardial imaging agent technetium-99m tetrofosmin (99mTc-P53). J Nucl Med 33: 850–851.Google Scholar
  36. Fritzberg AR, Kuni CC, Klingensmith WC III and Stevens J (1982): Synthesis and biological evaluation of Tc-99m N,N′-bis(mercaptoacetyl)-2,3-diaminopropanoate: a potential replacement for [131I]o-iodohippurate. J Nucl Med 23:592–598.Google Scholar
  37. Fritzberg AR, Kasina S, Eshima D and Johnson DL (1986): Synthesis and biological evaluation of technetium-99m-MAG3. J Nucl Med 27: 111–116.Google Scholar
  38. Fritzberg AR, Abrams PG, Baumier PL, Kasina S, Morgan AC Jr, Rao TN, Reno JM, Sanderson JA, Srinivasan A, Wilbur DS and Vandrrheyden J-L (1988): Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci 85: 4025–4029.Google Scholar
  39. Gabizon A, Chisin R, Amselem S, Druckmann S, Cohen R, Goren D, Fromer I, Peretz T, Sulkes A, and Barenholz Y (1991): Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br J Cancer 64: 1125–1132.Google Scholar
  40. Ganzow OA (1991): Newer approaches to the radiolabeling of monoclonal antibodies by use of metal chelates. Nucl Med and Biol 18: 369–81.Google Scholar
  41. Griffiths GL, Goldenberg DM, Jones AL and Hansed HJ (1992): Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconj Chem 3: 91–99.Google Scholar
  42. Hall H, Högberg T, Halldin C, Köhler C, Ström P, Ross SB, Larsson SA and Farde L (1991): NCQ 298, a new selective iodinated salicylamide ligand for the labelling of dopamine D2 receptors. Psychopharmacol 103: 6–18.Google Scholar
  43. Hamilton JG (1942): The use of radoactive tracers in biology and medicine. Radiology 39: 541–551.Google Scholar
  44. Harper PV, Andros G and Lathrop KA (1962): Progress report. In: Semiannual report to the Atomic Energy Commission, Jacobson LO, ed. ACRH-18: 76–87.Google Scholar
  45. Harper PV, Lathrop KA and Richards P (1964): A radiocolloid of 99mTc J Nucl Med 5: 382.Google Scholar
  46. Hatanaka Y and Hiyama T (1987): Palladium-mediated silylation of organic halides with dilsilane/F- reagent. Tetrahedron Lett 28: 4715–4718.Google Scholar
  47. Hnatowich DJ (1990): Recent developments in the radiolabeling of antibodies with iodine, indium, and technetium. Semin Nucl Med 20: 80–91.Google Scholar
  48. Hnatowich DJ, Layne WW, Childs RL, Lanteigne D, Davis MA, Griffin TW and Doherty PW (1983): Radioactive labeling of antibody: A simple and efficient method. Science 220: 613–615.Google Scholar
  49. Holman BL, Hellman RS, Goldsmith SJ, Mena I, Leveille L, Gherardi PG, Moretti J-L, Bischof-Delaloye A, Hill T, Rigo PM, Van Heertum RL, Ell PJ, Buell U, De Roo MC and Morgan RA (1989): Biodistribution, dosimetry, and clinical evaluation of technetium-99m ethyl cysteinate dimer in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30: 1018–1024.Google Scholar
  50. Innis R, Baldwin R, Sybirska E, Zea Y, Laruelle M, Al-Trkriti M, Charney D, Zoghbi S, Smith E, Wisniewski G, Hoffer P, Wang A, Milius R and Neumeyer J (1991): Single photon emission computed tomography imaging of monamine reuptake sites in primate brain with [123I]CIT. Eur J Pharmacol 200: 369–370.Google Scholar
  51. Jones AG, Davison A, Lategola MR, Brodack JW, Orvig C, Sohn M, Toothaker AK, Lock CJL, Franklin KJ, Costello CE, Carr SA, Biemann K and Kaplan ML (1982): Chemical and in vivo studies of the anion oxo [N,N′-ethylene-bis-(2-mercaptoacetamido)]-technetate(V). J Nucl Med 23:801–809.Google Scholar
  52. Jones AG, Abrams MJ, Davison A, Brodack JW, Toothaker AK, Aldelstein SJ and Kassis AI (1984): Biological studies of a new class of technetium complexes: The hexakis-(alkylisonitrile)-technetium(I) cations. Int J Nucl Med Biol 11: 225–234.Google Scholar
  53. Jurison S, Schlemper E, Troutner DE, Canning LR and Nowotnik DP (1986): Synthesis, characterization, and x-ray structural determinations of neutral Tc(V) oxotetradentate amine oxime complexes. Inorg Chem 25: 543–549.Google Scholar
  54. Kasina S, Fritzberg AR, Johnson DL and Eshima D (1986): Tissue distribution properties of technetium-99m-diamide-dimercaptide complexes and potential use as renal radiopharmaceuticals. J Med Chem. 29: 1933–1940.Google Scholar
  55. Kelly JD, Higley B, Archer CM, Canning LR, Chiu KW, Edwards B, Forster AM, Gill HK, Latham IA, Pickett RD, Webbon P, Edwards PG, Imran A, Griffiths DV, York DC, Mahoney PM, Tonkinson DJ, Dilworth JR and Lahiri A (1990): Technetium-99m complexes of functionalized diphosphines for myocardial imaging. In: Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol. 3, Nicolini M, Bandoli G and Mazzi U, eds. New York: Raven Press.Google Scholar
  56. Kessler RM, Ansari MS, Schmidt DE, Depaulis T, Qanton JA, Innis R, Altikriti M, Manning RG and Gillespie D (1991): High affinity dopamine-D2 receptor radioligands 2. [I-125]Epidepride, a potent and specific radioligand for the characterization of striatal and extrastriatal dopamine-D2 receptors. Life Sci 49: 617–628.Google Scholar
  57. Kotze HF, Heyns AdP, Lotter MG, Pieters H, Roodt JP, Sweetlove MA, Badenhorst PN (1991): Comparison of oxine and tropolone methods for labeling human plateltes with Indium-111. J. Nucl Med 32: 62–66.Google Scholar
  58. Kuhl DE, Barrio JR, Huang H-C, Selin C, Ackerman RF, Lear JL, Wu JL, Lin TH and Phelps ME (1982): Quantifying local cerebral blood flow by N-isopropyl-p-[123I]iodoamphetamine (IMP) tomography. J Nucl Med 23: 196–203.Google Scholar
  59. Kung HF, Tramposch KM and Blau M (1983): A new brain perfusion imaging agent: [I-123]HIPDM: N,N,N′-Trimethyl-,[2′-hydroxy-3-methyl-5-iodobe nzyl]-l,3-propanediamine. J Nucl Med 24: 66–72.Google Scholar
  60. Kung HF, Molnar M, Billings J, Wicks R and Blau M (1984): Synthesis and biodistribution of neutral, lipid soluble Tc-99m complexes that cross the blood-brain barrier. J Nucl Med 25: 326–332.Google Scholar
  61. Kung HF, Guo YZ, Billings J, Xu X, Mach RA, Blau M and Ackerhalt RE (1988a): Preparation and biodistribution of [125I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. Nucl Med Biol 15: 195–201.Google Scholar
  62. Kung H, Alavi A, Billings J, Kung M, Pan S and Reilley J (1988b): [123I]IBZP: A potential CNS D-l dopamine receptor imaging agent: In vivo biodistribution in a monkey. J Nucl Med 29: 758.Google Scholar
  63. Kung HF (1990): Radiopharmaceuticals for CNS receptor imaging with SPECT. Nucl Med Biol 17: 85–92.Google Scholar
  64. Kung HF, Alavi A, Chang W, Kunf M-P, Keyes HW Jr, Velchik MG, Billings J, Pan S, Noto R, Rausch A and Reilley J (1990): In vivo SPECT imaging of CNS D-2 dopamine receptors: Initial studies with Iodine-123 IBZM in humans. J Nucl Med 31: 573–579.Google Scholar
  65. Kung HF, Kung MP, Billings J, Shao L, Mozley D, Broich K, Pfeiffer N, McElgin W, Ranger N and Alavi A (1991): In vivo study of I-123 IBF: a new D2 dopamine receptor imaging agent. J Nucl Med 32: 1008.Google Scholar
  66. Langen K-J, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, Kuweit T, Stöcklin G and Feinendegen LE (1990): SPECT studies of brain tumors with L-3-[123I]Iodo-a-methyl tyrosine: Comparison with PET, 124IMT and first clinical results. J Nucl Med 31:281–286.Google Scholar
  67. Laurin NR, Dreidger AA, Hurwitz GA, Mattar AG, Powe JE, Chamberlein MJ, Zabel PL and Pavlosky WF (1989): Cerebral perfusion imaging with technetium-99m HM-PAO in brain death and severe central nevous system injury. J Nucl Med 30: 1627–1635.Google Scholar
  68. Leveille L, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, Kupranick D and Walowitch RC (1989): Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 2: Biodistribution and brain imaging in humans./Nucl Med 30:1902–1910.Google Scholar
  69. Lever SZ and Wagner HN (1990): The status and future of technetium-99m radiopharmaceuticals. In: Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol. 3, Nicolini M, Bandoli G and Mazzi U, eds. New York: Raven Press.Google Scholar
  70. Lever SZ, Burns HD, Kervitsky TM, Goldfart) HW, Woo DV, Wong DF, Epps LA, Kramer AV and Wagner HN Jr (1985): Design, preparation, and biodistribution of a technetium-99m triaminedithiol complex to assess regional cerebral blood flow. J Nucl Med 26: 1287–1294.Google Scholar
  71. Lever JR, Scheffel UA, Musachio JL, Stathis M and Wagner HN Jr (1991): Radioiodinated D-(+)-Nl-Ethyl-2-iodolysergic acid diethylamide: a ligand for in vitro and vivo studies of serotonin receptors. Life Sei 48: PL73–78.Google Scholar
  72. Linder K, Feld T, Juri PN, Nunn AD and Treher EN (1987): The synthesis of a new technetium agent, SQ 32097, which can be used to assess regional cerebral blood flow./Nucl Med 28: 592–593.Google Scholar
  73. Linder KE, Wen MD, Nowotnic DP, Malley MF, Gougoutas L-L, Nunn AD and Eckelman WC (1991): Technetium labeling of monoclonal antibodies with functionalized BATOs. 1. TcCl(DGM)3PITC. Bioconjugate Chem 2: 160–170.Google Scholar
  74. Mather SJ (1987): Labeling with Indium-111. In: Safety and Efficacy of Radiopharmaceutical 1987. Kristensen K and Norbygaard E eds. Dordrecht: Martinus Nijhoff Publishers.Google Scholar
  75. Mathias CJ, Sun Y, Welch MJ, Connett JM, Philpott GW and Martell AE (1990): N,N’-Bis(20hydroxybenzyl)-1-(4-bromoacetamido-benzyl)-1,2-ethylenediamine-N,N’-diaceticacid: A new bifunctional chelate for radiolabeling antibodies. Bioconjugate Chem 1: 204–211.Google Scholar
  76. Mathias CJ, Sun Y, Welch MJ, Green MA, Thomas JA, Wade KR and Martell AE (1988): Targeting radiopharmaceuticals: Comparative biodistribution biodistribution studies of gallium and indium complexes of multidentate ligands. Nucl Med Biol 15: 69–81.Google Scholar
  77. McAfee JG and Thakur ML (1976): Survey of radioactive agents for in vitro labelling of phagocytic leucocytes. J Nucl Med 17:480–487.Google Scholar
  78. Meares CF, McCall MJ, Reardon DJ, Goodwin DA, Diamanti CJ and McGuire M (1984): Conjugation of antibodies with bifunctional chelating agents: isothiocyanato and bromoacetamido reagents, methods of analysis and subsequent addition of metal ions. Anal Biochem 142: 68–78.Google Scholar
  79. Mertens J, Vanryckeghem W, Gysemens M, Eersels J, Finda-Panek E and Carlsen L (1987): New fast preparation of 123I labelled radiopharmaceuticals. Eur J Nucl Med 13: 380–381.Google Scholar
  80. Mertens J, Bossuyt-Piron C, De Geeter F, Christiaens L, Cantineau R, Guillaume M and Leyssen J (1989): Evaluation of pure 2′-I-123-spiperone as a promising tracer for in vivo receptor studies with SPECT. J Nucl Med 30: 926.Google Scholar
  81. Mertens L, Gysemans M, Bossuyt-Piron C and Thomas M (1990): High yield preparation of pure 2-radioiodo-ketanserin of high specific activity, a serotonin S2 receptor tracer for SPECT. J Labelled Compd Radiopharm 28:732–737.Google Scholar
  82. Messa C, Zito F, Colombo F, Rossetti C, Taddei G, Lucignani G, Fazio F and Deutsch E (1990): Preliminary evaluation of the rCBF tracer [99mTc]d,l-CB-PAO in human volunteers. In: Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol. 5, New York: Raven Press.Google Scholar
  83. Moerlein S (1985): Regiospecific incorporation of no-carrier-added radiobromine and radioiodine into aromatic rings via halogenodegermylation. J Chem Soc Perkin Trans I: 1687–1692.Google Scholar
  84. Moerlein S (1987): Use of aryltrimethylgermanium substrates for facile aromatic chlorination, bromination, and iodination. J Org Chem 52: 664–667.Google Scholar
  85. Moerlein S, Mathis C and Yano Y (1987): Comparative evaluation of electrophilic aromatic iododemetallation techniques for labeling radiopharmaceuticals with Iodine-122. Appl Radiat Isot Int J Radiat Appl Instrum (Part A) 38: 85–90.Google Scholar
  86. Morgan GF, Deblaton M, Clements P, Van den Broeck P, Huddain W, Bossuyt A and Thornback JR (1990): [99mTc]TcMRP20 — An example of a new class of neutral complexes with implications for brain scintigraphy. In: Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol 3, Nicolini M, Bandoli G and Mazzi U, eds. New York: Raven Press.Google Scholar
  87. Mountz JM, Modell JG, Foster NL, DuPree ES, Ackermann RJ, Petry NA, Bluemlein LE and Kuhl DE (1990): Prognostication of recovery following stroke using comparison of CT and technetium-99m HM-PAO SPECT. J Nucl Med 31: 61–66.Google Scholar
  88. Mueller-Gaertner H, Wilson AA, Dannals RF, Wagner HN Jr and Frost JJ (1992): Imaging of muscarinic cholinergic receptors in human brain in vivo with SPECT, [123I]-4-Iododexetimide, and [123I]-4-Iodolevetimide. J Cereb Blood Flow Met, in press.Google Scholar
  89. Najafi A, Alauddin MM, Siegel ME and Epstein AL (1991): Synthesis and preliminary evaluation of a new chelate N2S4 for use in labeling proteins with metallic radionuclides. Nucl Med Biol 18: 179–185.Google Scholar
  90. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA and Chaplin SB (1987): Technetium-99m-d,l-HM-PAO. A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28: 191–202.Google Scholar
  91. Otsuka FL and Welch MJ (1987): Methods to label antibodies for use in tumor imaging. Nucl Med and Biol 14: 243–249.Google Scholar
  92. Owens J, Murray T, McCulloch J and Wyper D (1992): Synthesis of (R,R)123I-QNB, a SPECT Imaging agent for cerebral muscarinic acetylcholine receptors in vivo. J Labelled Compd Radiopharm 31: 45–60.Google Scholar
  93. Peters AM, Saverymutti SH, Danpure HJ and Osman S (1986): Cell labeling. In: Methods in Hematology, Lewis SM and Bayly RJ, eds. New York: Churchill Livingston.Google Scholar
  94. Peters AM (1988): Review on platelet labelling and kinetics. Nucl Med Comm, 9: 803–808.Google Scholar
  95. Quadri SM, Paik CH, Reba RC and Hong WP (1990): Optimization of biodistribution by introducing different chemical linkages between antibody and an indium-111 chelate. Cancer Treat Res 51: 201–13.Google Scholar
  96. Richards P and Atkins HL (1968): 99mTc labeled compounds. Jpn Nucl Med 7:l65.Google Scholar
  97. Saji H, Nakatsuka I, Shiba K, Tokui T, Horiuchi K, Yoshitake A, Torizuka K and A(?) Y (1987): Radioiodinated 2′-Iodospiperone: a new radioligand for in vivo dopamine receptor studies. Life Sci 41: 1999–2006.Google Scholar
  98. Scheffel U, Goldfarb HW, Lever SZ, Gungon RL, Burns HD and Wagner HN Jr (1988): Comparison of technetium-99m aminoalkyl diaminodithiol analogs as potential brain blood flow imaging agents. J Nucl Med 29: 73–82.Google Scholar
  99. Seevers R and Counsell R (1982): Radioiodination techniques for small organic molecules. Chem Rev 82: 575–582.Google Scholar
  100. Seldin DW, Johnson LL, Blood DK, Muschel MJ, Smith KF, Wall RM and Cannon PJ (1989): Myocardial perfusion imaging with technetium-99m SQ30217: Comparison with thallium-201 and coronary anatomy. J Nucl Med 30: 312–319.Google Scholar
  101. Shaya ES, Scheffel U, Dannais RF, Ricaurte GA, Camol FI, Wagner HN Jr, Kuhar MJ and Wong DF (1992): In vivo imaging of dopamine reuptake sites in the primate brain using single photon emission computed tomography (SPECT) and Iodine-123 labeled RTI-55. Synapse 10: 169–172.Google Scholar
  102. Smith FW, Gemmell HG and Sharp PF (1987): The use of 99m-Tc-HM-PAO for the diagnosis of dementia. Nucl Med Commun 8: 525–533.Google Scholar
  103. Stabin M and Schlafke-Stelson A (1991): A list of nuclear medicine radionuclides and potential contaminants for operators of in vivo counters. Health Physics 61: 427–30.Google Scholar
  104. Subramanian G, McAfee JG, Bell EG, Sandler M, Keesee RE and Henry C (1971): New 99mTc labeled radiopharmaceuticals for renal imaging. J Nucl Med 12:399.Google Scholar
  105. Thakur ML (1986): Radiolabeled Leukocytes. In: Radiopharmaceuticals: progress and clinical perspectives, Fritzberg AR, ed. Boca Raton: CRC Press.Google Scholar
  106. Thakur ML, Welch MJ, Joist JH and Coleman RE (1976): Indium-111 labelled platelets: studies on preparation and evaluation of in vivo and in vitro functions. Thrombosis Res 9: 345–357.Google Scholar
  107. Tow DE, Wagner HN, Lopex-Majano V, Smith EM and Magita T (1966): Validity of measuring regional pulmonary arterial blood flow with macroaggregates of human derum albumin. Am J Roentgen 96: 664–676.Google Scholar
  108. Treher EN, Francesconi LC, Gougoutas JZ and Malley MF (1989): Monocapped tris(dioxime) complexes of technetium(III): Synthesis and structural characterization of TcX(dioxime)3B-R (X = Cl, Br; dioxime = dimethylglyoxime, cyclohexanedione dioxime; R = CH3, C4H9). Inorg Chem 28: 3411–3416.Google Scholar
  109. Troutner DE, Volkert WA, Hoffman TJ and Holmes RA (1984): A neutral lipophilic complex of 99mTc with a multidentate amine oxime. Int J Appl Radiat Isot 35: 467–470.Google Scholar
  110. Verbruggen AM, Nosco DL, Van Nerom CG, Bormans GM, Adriaens PJ and De Roo MJ (1992): Technetium-99m-L,L-ethylenedicysteine: a renal imaging agent. I. Labeling and evaluation in animals. J Nucl Med 33:551–557.Google Scholar
  111. Wackers FJT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L and McKusick K (1989): Technetium-99m hexakis 2-methoxyisobutyl isonitrile: Human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30: 301–311.Google Scholar
  112. Walovitch RC, Williams SJ and Lafrance ND (1990): Radiolabeled agents for SPECT imaging of brain perfusion. Nucl Med Biol 17: 77–83.Google Scholar
  113. Washburn LC (1991): Radiochemistry of monoclonal antibody labeling. In: New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control, Emran AM, ed. New York: Plenum Press.Google Scholar
  114. Weinberger DR, Gibson RE, Coppola R, Jones DW, Braun AR, Mann U, Berman KF, Sunderland T, Chase TN and Reba RC (1989): Distribution of muscarinic receptors in patients with dementia: A controlled study of 123I QNB and SPECT. J Cereb Blood Flow Metab 9: S537.Google Scholar
  115. Welch MJ and Welch TJ (1975): Solution chemistry of carrier-free indium. In: Radiopharmaceuticals, Subramanian G, Rhodes BA, Cooper MD and Sodd VJ, eds. New York: Society of Nuclear Medicine.Google Scholar
  116. Winchell HS, Horst WD, Braun L, Oldendorf WH, Hatter R and Parker H (1980): N-Isopropyl-(123I)-p-iodoamphetamine: Single pass uptake and washout, binding to brain synaptosomes and localization in dog and monkey brain. J Nucl Med 21: 947–952.Google Scholar
  117. Yeh SM, Meares CF, and Goodwin DA (1979): Decomposition rates of radiopharmaceutical indium chelates in serum. J Radioanal Chem 53: 327–336.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • H. Donald Burns
    • 1
  • Kwamena E. Baidoo
    • 2
  • Alan A. Wilson
    • 3
  1. 1.Department of RadiopharmacologyMerck Research LaboratoriesUSA
  2. 2.Division of Nuclear MedicineThe Johns Hopkins Medical InstitutionsUSA
  3. 3.PET Imaging FacilityClarke Institute of PsychiatryUSA

Personalised recommendations