Chemistry of Tracers for Positron Emission Tomography

  • Robert F. Dannals
  • Hayden T. Ravert
  • Alan A. Wilson


There are hundreds of naturally occurring and artificial radionuclides; however, only a small number have found use in biomedical research. Of this limited number, a select few have been used to study biochemistry and pharmacology in vivo with emission tomography. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) offer biomedical researchers unique opportunities for studying a wide variety of biochemical and pharmacological interactions in living man. While SPECT offers the advantages of widespread availability of instrumentation and relative low cost of radionuclides (e.g., Technetium-99m and Iodine-123), PET has the distinct advantages of quantitative instrumentation and versatile chemistry of radionuclides (especially, Oxygen-15, Nitrogen-13, Carbon-11, and Fluorine-18). This chapter will focus primarily on these four radioisotopes for PET and highlight certain aspects of the radiochemistry involved in the preparation of tracers for PET studies.


Positron Emission Tomography High Performance Liquid Chromatography Single Photon Emission Compute Tomography Positron Emission Tomography Study Muscarinic Cholinergic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge MS, Cassidy EH and Terris AH (1990). A routine, automated synthesis of oxygen-15-labeled butanol for positron tomography. J. Nucl Med 31: 1727–1731.Google Scholar
  2. Burns HD, Lever JR, Dannals RF, Frost JJ, Wilson AA, Ravert HT, Subramanian V, Zemyan SE, Langstrom B and Wagner HN Jr (1984a): Synthesis of ligands for imaging opiate receptors by positron emission tomography: Carbon-11 labeled diprenorphine. J. Label Compd Ratiopharm 21: 1167–1169.Google Scholar
  3. Burns HD, Dannals RF, Langstrom B, Ravert HT, Zemyan SE, Duelfer T, Wong DF, Frost JJ, Kuhar MJ and Wagner HN Jr (1984b): (3-N-[11C]Methyl)spiperone, a ligand binding to dopamine receptors: Radiochemical synthesis and biodistribution studies in mice. J. Nucl Med 25:1222–1227.Google Scholar
  4. Chesis PL and Welch MJ (1989a): Direct analysis of F-18 labeled receptor imaging agents with in vitro binding assays. J. Nucl Med 30: 931.Google Scholar
  5. Chesis PL and Welch MJ (1989b): Synthesis and in vitro characterization of fluorinated U-50488 analogs for PET studies. J. Nucl Med 30: 931.Google Scholar
  6. Coenen H, Wienhard K, Stöcklin G, Laufer P, Heboid I and Pawlik G (1988): PET measurement of D2 and S2 receptor binding of 3-N-([2′-18F]fluoroethyl)spiperone in baboon brain. Eur J Nucl Med 14: 80–87.CrossRefGoogle Scholar
  7. Dannals RF, Ravert HT, Frost JJ, Wilson AA, Burns HD and Wagner HN Jr (1985): Radiosynthesis of an opiate receptor binding radiotracer: 11C-carfentanil. Int J Appl Radiat Isot 36: 303–306.CrossRefGoogle Scholar
  8. Dannals RF, Ravert HT, Wilson AA and Wagner HN Jr (1986): An improved synthesis of (3-N-[11C]methyl)spiperone. Int J Appl Radiat Isot 37:433–434.CrossRefGoogle Scholar
  9. Dannals RF, Langstrom B, Ravert HT, Wilson AA and Wagner HN Jr (1988): Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]Dexetimide and [11C]levetimide. Appl Radiat Isot, Int J Radiat Appl Instrum Part A 39: 291–295.CrossRefGoogle Scholar
  10. Del Fiore G, Depresseux J-C, Bartsch P, Quaglia L and Peters J-M (1979): Production of oxygen-15, nitrogen-13 and carbon-11 and of their low molecular weight derivatives for biomedical applications. Int J Appl Radiat Isot 30: 543–549.CrossRefGoogle Scholar
  11. Ehrhardt GJ and Welch MJ (1978): A new germanium-68/gallium-68 generator. J. Nucl Med 19:925–929.Google Scholar
  12. Finn RD, Boothe TE, Vora MM, Hildner JC, Emran AM and Kothari PJ (1984): Syntheses with isotopically labelled carbon. Methyl iodide, formaldehyde, and cyanide. Int J Appl Radiat Isot 35:323–335.CrossRefGoogle Scholar
  13. Fowler JS (1978): Positron-emitting nuclides and their synthetic incorporation in radiopharmaceuticals. In: Chemistry of Radiopharmaceuticals,Heindel ND, Burns HD, Honda T and Brady LW, eds. New York: Masson Publishing USA, Inc.Google Scholar
  14. Fowler JS, Arnett CD, Wolf AP, MacGregor RR, Norton EF and Findley AM (1982): Carbon-11 labeled spiroperidol. Synthesis, specific activity determination and biodistribution in mice. J. Nucl Med 23:437–445.Google Scholar
  15. Fowler JS and Wolf AP (1986): Positron emitter-labeled compounds: Priorities and problems. In: Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Phelps M, Mazziotta J and Schelbert H, eds. New York: Raven Press.Google Scholar
  16. Frost JJ, Smith AC and Wagner HN Jr (1986): 3H-diprenorphine is selective for mu opiate receptors in vivo. Life Sci 38: 1597–1606.Google Scholar
  17. Frost JJ, Mayberg HS, Sadzot B, Dannais RF, Lever JR, Ravert HT, Wilson AA, Wagner HN Jr and Links JM (1990): Comparison of [11C]diprenorphine and [11C]carfentanil binding to opiate receptors in humans by positron emission tomography. J. Cereb Blood Flow Metab 10: 484–92.CrossRefGoogle Scholar
  18. Fujibayashi Y, Matsumoto K, Yonekura Y, Konishi J and Yokoyama A (1989): A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals. J Nucl Med 30: 1838–1842.Google Scholar
  19. Gelbard AS (1981): Biosynthetic methods for incorporating positron-emitting radionuclides into compounds of biomedical interest. J Label Compds Radiopharm 18: 933–945.CrossRefGoogle Scholar
  20. Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Fernandez-Rubio F, Perlmutter JS, Raichle ME and Bergmann SR (1990): Copper-62-labeled pyruvaldehyde bis(N4-methylthiosemicarbazonato)-copper(II): Synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med 31:1989–1996.Google Scholar
  21. Haigh JC, Lee LJ and Schweinsburg RE (1983): Immobilization of polar bears with carfentanil. J Wildl Dis 19: 140–144.Google Scholar
  22. Janssen PAJ, Niemegeers CJE, Schellekens KHL, Domoen P, Lanaerts FM, van Nueten JM, van Wijngaarden I and Brugmans J (1971): Benzetimide and its optical isomers. Arzneim Forsch (Drug Res) 21:1365–1373.Google Scholar
  23. Kilbourn MR (1990): Fluorine-18 Labeling of Radiopharmaceuticals (NAS-NS 3203). Washington, DC: National Academy Press.Google Scholar
  24. Kilbourn MR, Welch MJ, Dence CS, Tewson TJ, Saji H and Maeda M (1984): Carrier-added and no-carrier-added syntheses of fluorine-18 labeled spiroperidol and haloperidol. Int J Appl Radiat Isot 35: 591–598.CrossRefGoogle Scholar
  25. Kock MD and Berger J (1987): Chemical immobilization of free-ranging North American bison in Badlands National Park, South Dakota. J Wildl Dis 23:625–633.Google Scholar
  26. Laduron PM and Janssen PFM (1979): Characterization and subcellular localization of brain muscarinic receptors labelled in vivo by [3H]dexetimide. J Neurochem 33: 1223–1231.CrossRefGoogle Scholar
  27. Laduron PM, Verwimp M and Leysen JE (1979): Stereospecific in vitro binding of [3H]dexetimide to brain muscarinic receptors. J. Neurochem, 32: 421–427.CrossRefGoogle Scholar
  28. Lever JR, Dannals RF, Wilson AA, Ravert HT and Wagner HN Jr (1987): Synthesis of carbon-11 labeled diprenorphine: A radioligand for positron emission tomographic studies of opiate receptors. Tetrahedron Letters 28: 4015–4018.CrossRefGoogle Scholar
  29. Luthra SK, Pike VW and Brady F (1985): The preparation of carbon-11 labeled diprenorphine. A new radioligand for the study of the opiate receptor system in vivo. J Chem Soc, Chem Comm: 1423–1425.Google Scholar
  30. Mathis CA, Lagunas-Solar MC, Sargent T III, Yano Y, Vuletich V and Harris LJ (1986): A 122Xe-122I generator for remote radioiodinations. Appl Radiat Isot Int J Radiat Appl Instrum Part A 37: 258–260.CrossRefGoogle Scholar
  31. Moerlein SM, Lannoye GS and Welch MJ (1989): No-carrier-added synthesis of N w-(F-18)fluoroethyl SCH-23390. J Nucl Med 30: 931.Google Scholar
  32. Paans AMJ, J Welleweerd, W Vaalburg, S Reiffers and MG Woldring (1980): Excitation functions for the production of bromine-75: A potential nuclide for the labelling of radiopharmaceuticals. Int J Appl Radiat Isot 31: 267–273.CrossRefGoogle Scholar
  33. Palmer AJ, Clark J and Goulding RW (1977): The preparation of fluorine-18 labelled radiopharmaceuticals. Int J Appl Radiat Isot 28: 53–65.CrossRefGoogle Scholar
  34. Rimland A and Langstrom B (1987): Synthesis of carbon-11 iodomethylcyclopropane. An interesting alkylating reagent. Appl Radiat Isot, Int J Radiat Appl Instrum Part A 38: 949–952.CrossRefGoogle Scholar
  35. Satyamurthy N, Bida G, Barrio J, Luxen A, Mazziotta J, Huang S and Phelps M (1986): No-carrier-added 3-(2′-[18F]fluoroethyl)-spiperone, a new dopamine receptor-binding tracer for positron emission tomography. Nucl Med Biol, Int J Radiat Appl Instrum Part B 13: 617–624.Google Scholar
  36. Shiue C-Y, Fowler JS, Wolf AP, Watanabe M and Arnett C (1985): Syntheses and specific activity determinations of no-carrier-added fluorine-18 labeled neuroleptic drugs. J Nucl Med 26:181–186.Google Scholar
  37. Soudijn W, van Wijngaarden I and Ariens EJ (1973): Dexetimide, a useful tool in acetylcholine-receptor localization. Eur J Pharm 24: 43–48.CrossRefGoogle Scholar
  38. Stahl KD, Van Bever W, Janssen P and Simon EJ (1977): Receptor affinity and pharmacological potency of a series of narcotic analgesic, anti-diarrheal and neuroleptic drugs. Eur J Pharm 46: 199–205.CrossRefGoogle Scholar
  39. Stöcklin G (1986): Molecules labeled with positron emitting halogens. Nucl Med Biol Int J Radiat Appl Instrum Part B 13: 109–118.Google Scholar
  40. Van Daele PGH, De Bruyn MFL, Boey JM, Sanczuk S, Agten JTM and Janssen PAJ (1976): Synthetic analgesics: N-(l-[2-arylethyl]-4-substituted 4-piperidinyl) N-arylalkanamides. Arzneim Forsch (Drug Res) 26: 1521–1531.Google Scholar
  41. Wagner HN Jr, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom S, Lukas SE, Kramer AV and Kuhar MJ (1983): Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266.CrossRefGoogle Scholar
  42. Welch M, Katzenellenbogen J, Mathias C, Brodack J, Carlson K, Chi D, Dence C, Kilbourn M, Perlmutter J, Raichle M and Ter-Pogossian M (1988): N-(3-[18F]Fluoropropyl)-spiperone: The preferred 18F labeled spiperone analog for positron emission tomographic studies of the dopamine receptor. Nucl Med Biol, Int J Radiat Appl Instrum Part B 15: 83–97.Google Scholar
  43. Wilson AA, Dannals RF, Ravert HT, Frost JJ and Wagner HN Jr (1989): Synthesis and biological evaluation of [125I]- and [123I]-4-iododexetimide, a potent muscarinic cholinergic receptor antagonist. J Med Chem 32: 1057–1062.CrossRefGoogle Scholar
  44. Wilson AA, Dannals RF, Ravert HT and Wagner HN Jr (1990): Reductive amination of [18F]fluorobenzaldehydes: Radiosyntheses of [2-18F]- and [4-18F]fluoro-dexetimides. J. Label Compd Radiopharm 28: 1189–1199.CrossRefGoogle Scholar
  45. Wilson AA, Scheffel UA, Dannals RF, Stathis M, Ravert HT and Wagner HN Jr (1991): In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]- and 4-[18F]-fluorodexetimide. Life Sci 48: 1385–1394.CrossRefGoogle Scholar
  46. Wolf AP (1984): Cyclotrons, radionuclides, precursors, and demands for routine versus research compounds. Ann Neurol 15: S19–S24.CrossRefGoogle Scholar
  47. Wolf AP and Redvanly CS (1977): Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28: 29–48.CrossRefGoogle Scholar
  48. Wolf AP and Fowler JS (1979): Organic radiopharmaceuticals — Recent advances. In: Radiopharmaceuticals II, New York: Society of Nuclear Medicine.Google Scholar
  49. Wolf AP and Fowler JS (1986): Positron emitter-labeled radiotracers — Chemical considerations. In: Positron Emission Tomography, Reivich M and Alavi A, eds. New York: Alan R Liss, Inc.Google Scholar
  50. Wong DF, Wagner HN Jr, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Folstein MF, Petronis JD, Douglass KH, Toung JKT and Kuhar MJ (1984): Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396.CrossRefGoogle Scholar
  51. Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga C, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Snyder SH, Kuhar MJ and Gjedde A (1986): Positron emission tomography reveals elevated brain D2 dopamine receptors in schizophrenia. Science 234: 1558–1563.CrossRefGoogle Scholar
  52. Yano Y, Chu P, Budinger TF, Grant PM, Ogard AE, Barnes JW, O’Brien HA and Hoop B Jr (1977): Rubidium-82 generators for imaging studies. J Nucl Med 18:46–50.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Robert F. Dannals
    • 1
  • Hayden T. Ravert
    • 1
  • Alan A. Wilson
    • 1
  1. 1.Department of Nuclear MedicineThe Johns Hopkins Medical InstitutionsUSA

Personalised recommendations