Radiolabeled Atrial Natriuretic Peptide and Somatostatin for in Vivo Imaging of Receptors

  • Richard J. Flanagan


For many years peptides and proteins labeled with Iodine-125 on tyrosine residues have been standard tools of biochemistry for the in vitro mapping of receptors. Such methods provide microscopic information on a cellular level but little overall information about the in vivo biodistribution of the receptors and their dynamic relationship with their endogenous ligands. The gathering of this in vivo information by techniques such as Nuclear Imaging has been limited by the rapid catabolism of radiolabeled peptides in circulation. This is not as a result of labeling but is due to the extremely short half-life of peptides in vivo. The normal fate of peptides in circulation is to be partitioned between a large pool of low affinity non-specific peptidases and a small quantity of specific, high affinity receptors. Under such circumstances the labeled peptide will preferentially bind to the high affinity receptors but injection of amounts greater than the capacity of the receptors will cause overflow into the non-specific peptidase pool, with corresponding loss of information. Furthermore, it is important that receptor occupancy by the labeled peptide be limited, perhaps to less than 10% of receptor mass, in order that the ligand/receptor interactions observed are true tracer phenomena and not due to perturbation of the natural equilibrium by the injected material.


Atrial Natriuretic Peptide Guanylate Cyclase Atrial Natriuretic Factor Receptor Mediate Uptake Minute Post Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bovy PR, O’Neal JM, Olins GM, Patton DR, Mahta PP, McMahon EG, Palomo M, Schuh J and Blehm D (1988): A synthetic linear decapeptide binds to atrial natriuretic receptors and demonstrates cyclase activation and vasorelaxation activity. J Biol Chem 264: 20309–20313.Google Scholar
  2. Brady SF, Napier MA, Nutt RF and Vandlen RF (1986): Cardiac atrial peptides. US Patent No: 4,609,725.Google Scholar
  3. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J and Guillemin R (1972): Hypothalmic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 129: 77–79.Google Scholar
  4. Chang M-S, Lowe DG, Lewis M, Hellmiss R, Chen E and Goeddel DV (1989): Differential activation by atrial and brain natriuretic factor of two different guanylate cyclases. Nature 341: 68–72.CrossRefGoogle Scholar
  5. De Bold AJ (1985): Atrial Natriuretic Factor: a hormone produced by the heart. Science 230: 676–770.CrossRefGoogle Scholar
  6. De Lean A, Vinay P and Cantin M (1985): Distribution of Atrial Natriuretic Factor receptors in dog kidney fractions. FEBS Lett 193: 239–242.CrossRefGoogle Scholar
  7. Fuller F, Porter G, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA and Schenk DB (1988): Atrial natriuretic peptide clearance receptor. J Biol Chem 269: 9395–9401.Google Scholar
  8. Genest J and Cantin M (1987): Atrial Natriuretic Factor. Circulation 75 (Suppl.1): 1118–1124.Google Scholar
  9. Hamet P, Tremblay J, Pang SC, Skuherska R, Schiffrin EL, Garcia R, Catnin M, Genest J, Palmour R and Ervin ER (1986): Cyclic GMP as mediator and biological marker of atrial natriuretic factor. J Hypertens 4 (Suppl 2): S49–56.Google Scholar
  10. Healy DP and Fanestil DD (1986): Localization of atrial natriuretic peptide binding sites within the rat kidney. Am J Physiol 250: F573–F578.Google Scholar
  11. Kenny AJ and Stephenson SL (1988): Role of endopeptidase-24.11 in the inactivation of atrial natriuretic peptide. FEBS Lett 232: 1–8.CrossRefGoogle Scholar
  12. Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, Lameris JS, Reubi JC and Lamberts SW (1989): Localization of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1: 242–244.CrossRefGoogle Scholar
  13. Krenning EP, Bakker JW, Kooij PP, Breeman WA, Oei HY, de Jong M, Reubi JC, Visser TJ, Bruns C and Kwekkeboom DJ (1992): Somatostatin receptor scintigraphy with min-DTPA-D-Phe-1-Octreotide in man — metabolism, dosimetry and comparison with 123I-Tyr-3-Octreotide. J Nuc Med 33: 652–658.Google Scholar
  14. Kvols LK, Moertel CG, O’Connell MJ, Schuth AJ, Rubin J and Hahn RG (1986): Treatment of the malignant carcinoid syndrome: evaluation of a long-acting somatostatin analogue. N Eng J Med 315: 663–666.CrossRefGoogle Scholar
  15. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA and Lewicki JA (1987): Physiological role of silent receptors of atrial natriuretic factor. Science 238: 675–678.CrossRefGoogle Scholar
  16. Napier MA, Vandlen RL, Albers-Schönberg G, Nutt RF, Brady S, Lyle T, Winquist R, Faison EP, Heinel LA and Blaine EH (1984): Specific receptors for atrial natriuretic factor in renal and vascular tissue. Proc Nat Acad Sci 81:5946–5950.CrossRefGoogle Scholar
  17. Olins GM, Patton DR, Tjoeng FS and Blehm DJ (1986): Specific Receptors for Atriopeptin III in rabbit lung. Biochem Biophys Res Commun 140: 302–307.CrossRefGoogle Scholar
  18. Rechlin S (1983): Somatostatin. N Eng J Med 309: 1495–1501.CrossRefGoogle Scholar
  19. Reubi J-C, Häcke WH and Amberts SWJ (1987a): Hormone producing gastrointestinal tumours contain a high density of somatostatin receptors. J Clin Endocrinol Metab 65:1127–1134.CrossRefGoogle Scholar
  20. Reubi J-C, Maurer R, von Werder K, Torhorst J, Klijn GM and Lamberts SWJ (1987b): Somatostatin receptors in human endocrine tumours. Cancer Res 47: 551–558.Google Scholar
  21. Reubi J-C, Lang W, Maurer R, Koper JW and Lamberts SWJ (1987c): Distribution and biochemical characteristics of somatostatin receptors in human endocrine tumours. Cancer Res 47: 5758–5764.Google Scholar
  22. Schwartz J-C, Gros C, Lecomte JM and Bralet J (1990): Enkephalinase (EC Inhibitors: Protection of endogenous ANF against inactivation and potential therapeutic applications. Life Sci 47: 1279–1297.CrossRefGoogle Scholar
  23. Tremblay J and Hamet P (1991): Personal Communication.Google Scholar
  24. Veber DF, Saperstein R, Nutt RF, Freidinger RM, Brady SF, Curey P, Perlow DS, Paleveda WJ, Colton CD, Zacchei AG, Tocco DJ, Hoff DR, Vandlen RL, Gerich JE, Hall L, Mandarino L, Cordes EH, Anderson PS and Hirschmann R (1984): A super active cyclic hexapeptide analogue of somatostatin. Life Sci 34: 1371–1378.CrossRefGoogle Scholar
  25. Wildey GM, Misano KS and Graham KM (1992): Atrial Natriuretic Factor, Biosynthesis and Mechanism of Action. In: The Heart and Cardiovascular System, Fozzard HA, Haber E, Jennings RB, Katz AM and Morgan HE, eds. New York: Raven Press.Google Scholar
  26. Willenbrock R, Lambert R, Tremblay J, Bavaria G, Langlois Y, Léveille J, Flanagan R and Hamet P (1992): In vivo measurement of Atrial Natriuretic Peptide receptors using nuclear imaging, Am J Hypertens in press.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Richard J. Flanagan
    • 1
  1. 1.Merck FrosstCanada

Personalised recommendations