Advertisement

The Role of Positron Emission Tomography in Assessing and Monitoring Dopamine Active Drugs

  • Dean F. Wong
  • Babington Yung

Abstract

Neuroreceptors and neurotransmitters have been implicated in the pathophysiology, pathogenesis, and therapeutic mechanisms for a number of human disorders. The dopaminergic system is one of the most commonly implicated neuroreceptor neurotransmitter systems. Diseases such as Tourette’s Syndrome, schizophrenia, and Parkinson’s Disease are examples of such disorders where dopamine is suspected of playing an important role. Positron Emission Tomography (PET) and, more recently, Single Photon Emission Computed Tomography (SPECT) studies of neuroreceptors, re-uptake sites and neurotransmitter precursors as well as the indirect actions of endogenous neurotransmitters provide important methodological tools to investigate pathophysiology and design therapy. In this chapter we will describe how the PET studies can help design therapeutic stratagies through the monitoring and comparison of various drugs and toxins in the living human brain. Such measurements represent unique techniques that in many cases cannot be directly carried our by any other procedure.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Dopamine Receptor Positron Emission Tomography Imaging Positron Emission Tomography Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi A, Velchick MG, Kung HF, Kung MP, Chang W, Noto R, Pan S, Billings J, Sorgentoni K Rauch A and Reilly J (1989): Imaging the basal ganglia in the human brain with M23-IBZM: A new CNS D2 receptor agent. J Nucl Med 30:731.Google Scholar
  2. Baldessarini RJ (1985): Antipsychotic agents. In: Chemotherapy in Psychiatry: Principles and Practice, Cambridge: Harvard University Press.Google Scholar
  3. Baldessarini RJ and Frankenburg FR (1991): Clozapine: A novel antipsychotic agent. New Eng J Med 324(11): 746–754.CrossRefGoogle Scholar
  4. Bice AN, Wagner HN Jr., Frost JJ, Natarajan TK, Lee MC, Wong DF, Dannals RL, Ravert HT, Wilson AA and Links JM (1986). Simplified detection system for neuroreceptor studies in human brain. J Nucl Med 27: 181–184.Google Scholar
  5. Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD and Mueller RA (1984a): Neonatal-6-hydroxydopamine: Model of susceptibility for self-mutilation in the Lesch-Nyhan Syndrome. Pharmacol Biochem Behav 21:459–461.CrossRefGoogle Scholar
  6. Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Crotty K and Mueller RA (1984b): Behavioral differences between neonatal and adult-6-hydroxydopamine-treated rats to dopamine agonists: Relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J Pharmacol Exptl Ther 231: 343–354Google Scholar
  7. Calne DB, Langsten JW, Martin WR, Stoessl AJ, Ruth TJ, Adam MJ, Pate BD and Schulzer M (1985): Positron emission tomography after MPTP: Observations relating to the cause of Parkinson’s disease. Nature 317: 246–248.CrossRefGoogle Scholar
  8. Carlsson A (1978): Antipsychotic drugs, neurotransmitters, and schizophrenia. Am J Psychiat 135: 165–173.Google Scholar
  9. Chugani DC, Ackermann RF and Phelps ME (1988): In vivo [3H]spiperone binding: Evidence for accumulation in corpus striatum by agonist-mediated receptor internalization. J Cereb Blood Flow Metab 8: 291–303.CrossRefGoogle Scholar
  10. Cohen BM and Lipinski JF (1986): In vivo potencies of antipsychotic drugs in blocking alpha-1 noradrenergic and dopamine D2 receptors: Implications for drug mechanisms of action. Life Sci 39: 2571–80.CrossRefGoogle Scholar
  11. Coppens HJ, Slooff CJ, Paans AMJ, Wiegman T, Vaalburg W and Korf J (1991): High central D2-dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapy-resistant schizophrenic patients. Biol Psychiat 29: 629–634.CrossRefGoogle Scholar
  12. Creese I, Burt DR and Snyder SH (1976): Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483.CrossRefGoogle Scholar
  13. Dewey SL, Logan J, Wolf AP, Brodie JD, Angrist B, Fowler JS and Volkow ND (1991): Amphetamine induced decreases in (18F)-N-Methylspiroperidol binding in the baboon brain using positron emission tomography (PET). Synapse 7: 324–327.CrossRefGoogle Scholar
  14. Farde L and Hall H (1992): Positron emission tomography — examination of chemical transmission in the living human brain: Development of radioligands. Drug Res 42: 260–264.Google Scholar
  15. Farde L, Hall H, Ehrin E and Sedvall G (1986): Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258–261.CrossRefGoogle Scholar
  16. Farde L, Halldin C, Stone-Elander S and Sedvall G (1987): PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacol 92:278–284.CrossRefGoogle Scholar
  17. Farde L, Wiesel F-A, Hall H, Halldin C, Stone-Elander S and Sedvall G (1987): No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiat 44: 671–672.CrossRefGoogle Scholar
  18. Farde L, Wiesel FA, Halldin C and Sedvall G (1988): Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiat 45:71–76.CrossRefGoogle Scholar
  19. Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, Macgregor RR, Hitzemann R, Logan J, Bendriem B and Gatley SJ (1989): Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4: 371–377.CrossRefGoogle Scholar
  20. Garnett RS, Firnau G and Nahmias C (1983): Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138.CrossRefGoogle Scholar
  21. Gjedde A, Reith J, Dyve S, Leger G, Guttman M, Diksic M, Evans A and Kuwabara H (1991): Dopa decarboxylase activity of the living human brain. Proc Nat Acad Sci 88:2721–2725.CrossRefGoogle Scholar
  22. Goldstein M and Kuga S (1984): Dopamine (DA) agonist induced compulsive biting (CB) behavior in monkeys: animal model for Lesch-Nyhan syndrome. Soc Neurosci Abstr 10: 239.Google Scholar
  23. Goldstein M, Kuga S, Kusano N, Meller F, Dancis J and Schwarcz R (1986): Dopamine agonist induced self-mutilative biting behavior in monkeys with unilateral ventromedial tegmental lesions of the brain stem: Possible pharmacological model for Lesch-Nyhan syndrome. Brain Res 367: 14–20.CrossRefGoogle Scholar
  24. Hall H, Farde L and Sedvall G (1988): Human dopamine receptor subtypes. In vitro binding analysis using [3H]SCH23390 and [3H]SCH raclopride. J Neural Transm 73: 7–21.CrossRefGoogle Scholar
  25. Hall H, Wedel I, Halldin C, Kopp J, Farde L, Ehrin E, Fasth KJ, Langstrom B and Sedvall G (1990): Comparison of the in vitro receptor binding properties of N-(3H) raclopride to rat and human brain membranes. J Neurochem 55: 2048–2057.CrossRefGoogle Scholar
  26. Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth KJ, Langstrom B and Sedvall G (1986): Preparation of nC-labeled SCH23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. Appl Radiat hot 37: 1039–1043.CrossRefGoogle Scholar
  27. Hand TH, Hu XT and Wang RY (1987): Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Res 415: 257–69.CrossRefGoogle Scholar
  28. Hantraye P, Loch C, Tacke U, Riche D, Stulzaft O, Doudet D, Guibert G, Naquet R, Maziere B and Maziere M (1986): In vivo visualization by positron emission tomography of the progressive striatal dopamine receptor damage occurring in MPTP-intoxicated non-human primates. Life Sci 39:1375–1382.CrossRefGoogle Scholar
  29. Hartivig P, Eckernas SA, Ekblom B, Lindstrom L, Lundqvist H, Axelsson S, Fasth KJ, Gullberg P and Langstrom B (1988): Receptor binding and selectivity of three 11C-labeled dopamine receptor antagonists in the brain of Rhesus monkeys studied with positron emission tomography. Acta Neurol Scand 77: 314–321.CrossRefGoogle Scholar
  30. Hippus H (1989): The history of clozapine. Psychopharmacol 99: S3–S5.CrossRefGoogle Scholar
  31. Huang S-C, Barrio JR and Phelps ME (1986): Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab 6: 515–521@@CrossRefGoogle Scholar
  32. Hyttel J (1983): SCH 23390 — The first selective D1 antagonist. Eur J Pharmacol 91: 153–154.CrossRefGoogle Scholar
  33. Imperato A and Angelucci L (1989): The effects of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and in the prefrontal cortex of freely moving rats. Psychopharmacol Bull 25: 383–389.Google Scholar
  34. Innis RB, Malison R, al-Tikriti M, Sybirska E, Zoghbi S, Baldwin RM, Smith E, Elsworth J and Kung H (1991): Amphetamine-induced dopamine release competes in vivo for 1–123 IBZM binding to dopamine D2 receptors in non-human primate brain. J Nucl Med 32:1007.Google Scholar
  35. lorio LC, Barnett A, Leitz FH, Houser VP and Korduba CA (1983): SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exptl Ther 226: 462–468.Google Scholar
  36. Iyo M, Yamasaki T, Fukuda H, Inoue O, Suzuki K, Shinotoh H, Ito T, Yonezawa H, Nishio M, Koseki A, Fukui S and Tateno Y (1989): Age-related decrease of 11C-N-methylspiperone in vivo binding to human striatum detected by PET. Jap J Nucl Med 26: 213–220.Google Scholar
  37. Kane J, Honigfeld G, Singer J and Meltzer H (1988): Clozapine for the treatment resistant schizophrenia. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45: 789–796.CrossRefGoogle Scholar
  38. Karbe H, Wienhard K, Hamacher K, Huber M, Herholz K, Coenen HH, Stöcklin, Lövenich A and Heiss WD (1991): Positron emission tomography with 08F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol. J Neural Transm 86:163–173.CrossRefGoogle Scholar
  39. Kebabian JW and Greengard P (1972): Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174: 1346–1349.CrossRefGoogle Scholar
  40. Kebabian JW and Calne DB (1979): Multiple receptors for dopamine. Nature 277: 93–96.CrossRefGoogle Scholar
  41. Kessler RM, Whetsell WO, Ansari MS, Votaw JR, de Paulis T, Bell RL, Schmidt D, Mason S and Manning RG (1991): Postmortem studies and in vivo aging of extrastriatal dopamine D2 receptors in man. J Nucl Med 32:961.Google Scholar
  42. Kilbourn MR, Carey JE, Koeppe RA, Haka MS, Hutchins GD, Sherman PS and Kuhl DE (1989): Biodistribution, dosimetry, metabolism and monkey PET studies of [18F]GBR 13119. Imaging the dopamine uptake system in vivo. Int J Rad Appl Instrument (B) 16: 569–576.Google Scholar
  43. Kilbourn MR and Haka MS (1988): In vivo binding of [18F]GBR13119, a presynaptic dopamine uptake antagonist. Int J Rad Appl and Instrument (A) 39:279–82.Google Scholar
  44. Kung HF, Kasliwal R, Pan S, Kung MP, Mach RH and Guo YZ (1988): Dopamine D2 receptor imaging radiopharmaceuticals: Synthesis, radiolabeling and in vitro binding of (R)-(+)- and S-(-)-3-iodo-2-hydroxy-6-methoxy-N-((1-ethyl-2-pyrrolidinyl)-methyl) benzamide. J Med Chem 31: 1039–43.CrossRefGoogle Scholar
  45. Lane RT, Blaha CD and Rivet JM (1988): Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine, involvement of noradrenergic receptors demonstrated in vivo voltammetry. Brain Res 460: 398–401.CrossRefGoogle Scholar
  46. Leenders KL, Aquilonius SM, Bergstrom K, Bjurling P, Crossman AR, Eckernas S-A, Gee AG, Hartvig P, Lundqvist H, Langstrom B, Rimland A and Tedroff J (1988): Unilateral MPTP lesion in a rhesus monkey: Effects on the striatal dopaminergic system measured i in vivo with PET using various novel tracers. Brain Res 445: 61–67.CrossRefGoogle Scholar
  47. Logan J, Wolf AP, Shiue C-Y, and Fowler JS (1987): Kinetic modeling of receptor-ligand binding applied to positron emission tomographic studies with neuroleptic tracers. J Neurochem 48: 73–83.CrossRefGoogle Scholar
  48. Lundberg T, Lindstrom LH, Hartvig P, Eckerns SA, Ekblom B, Lundqvist H, Fasth KJ, Gullberg P and Langstrom B (1989): Striatal and frontal cortex binding of 11C-labelled clozapine visualized by positron emission tomography (PET) in drug-free schizophrenics and healthy volunteers. Psychopharmacol 99: 8–12.CrossRefGoogle Scholar
  49. McKenna PJ (1987): Pathology, phenomenology and the dopamine hypothesis of schizophrenia. Br J of Psych 151: 288–301.CrossRefGoogle Scholar
  50. Meltzer HY, Matsubara S and Lee JC (1989): Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exptl Ther 252: 238–46.Google Scholar
  51. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF and Welch MJ (1984): A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15: 217–227.CrossRefGoogle Scholar
  52. Perlmutter JS, Kilboum MR, Raichle ME and Welch MJ (1987): MPTP-induced upregulation of in vivo dopaminergic radioligand-receptor binding in humans. Neurol 37: 1575–1579.Google Scholar
  53. Perlmutter JS, Larson KB, Raichle ME, Markham J, Mintun MA, Kilboum MR and Welch MJ (1986): Strategies for in vivo measurement of receptor binding using positron emission tomography. J Cereb Blood Flow Metab 6: 154–169.CrossRefGoogle Scholar
  54. Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NPLG and Kerwin RW (1992): Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340: 199–202.CrossRefGoogle Scholar
  55. Pycock CJ, Kerwin RW and Carter CJ (1980): Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286: 74–77.CrossRefGoogle Scholar
  56. Ravert HT, Wilson AA, Dannals RF, Wong DF and Wagner HN Jr (1987): Radiosynthesis of a selective dopamine D-1 receptor antagonist: R(+)-7-Chloro-8-hydroxy-3[11C]methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine([11C]SCH 23390). Int J Appl Radiat Isot 38: 305–306.CrossRefGoogle Scholar
  57. Ritz MC, Lamb RJ, Goldberg SR and Kuhar MJ (1987): Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237: 1219–1223.CrossRefGoogle Scholar
  58. Sadzot B and Franck G (1990): Non-invasive methods to study drug disposition: Positron emission tomography detection and quantification of brain receptors in man. Eur J Drug Metab Pharmacokin 15: 135–142.CrossRefGoogle Scholar
  59. Scheffel U, Boja JW and Kuhar MJ (1989a): Cocaine receptors: in vivo labeling with 3H-(-) cocaine, 3H-WIN 35, 065–2, and 3H-WIN 35,428. Synapse 4: 390–392.CrossRefGoogle Scholar
  60. Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S and Tourtellotte WW (1987a): Human brain dopamine receptors in children and aging adults. Synapse 1: 399–404.CrossRefGoogle Scholar
  61. Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED, Riederer P, Jellinger K and Tourtellotte WW (1987b): Human brain D1 and D2 dopamine receptors in Schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neuropsychopharmacol 1: 5–15.CrossRefGoogle Scholar
  62. Seeman P, Guan H-C and Niznik HB (1989): Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: Implications for positron emission tomography of the human brain. Synapse 3:96–97.CrossRefGoogle Scholar
  63. Seeman P, Lee T, Chau-Wong M and Wong K (1976): Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261: 717–719.CrossRefGoogle Scholar
  64. Shaya EK, Scheffel U, Dannals RF, Ricaurte GA, Carroll FI, Wagner HN Jr, Kuhar MJ and Wong DF (1992): In vivo imaging of dopamine reuptake sites in the primate brain using single photon emission computed tomography (SPECT) and Iodine-123 labeled RTI-55. Synapse 10: 169–172.Google Scholar
  65. Smith M, Wolf AP, Brodie JD, Arnett CD, Barouche F, Shiue CY, Fowler JS, Russell JAG, MacGregor RR, Wolkin A, Angrist B, Rotrosen J and Peselow E (1988): Serial [18F]N-methylspiroperidol PET studies to measures changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiat 23: 653–663.CrossRefGoogle Scholar
  66. Sokoloff P, Giros B, Martres MP, Bouthenet ML and Schwartz JC (1990): Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151.CrossRefGoogle Scholar
  67. Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG and Ng G (1991): Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350: 614–619.CrossRefGoogle Scholar
  68. Tamminga CA, Dannals RF, Frost JJ, Wong DF and Wagner HN Jr (1993): Neuroreceptor and neurochemistry studies with positron emission tomography in psychiatric illness: Promise and progress. In: Reviews of Psychiatry, Vol 12, Oldham JM, Tasman A and Reba MB, eds. Washington, D.C.: American Psychiatric Press, Inc.Google Scholar
  69. Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P and Niznik HB (1991): Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614.CrossRefGoogle Scholar
  70. Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, Dewey S, Logan J, Bendriem B, Christman D, Hitzemann R and Henn F (1990): Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiat 147: 719–724.Google Scholar
  71. Waddington JL (1989): Sight and Insight: Brain dopamine receptor occupancy by neuroleptics visualised in living schizophrenic patients by positron emission tomography. Brit J Pscychiat 154:433–436.CrossRefGoogle Scholar
  72. Weinberger DR (1987): Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiat 44: 660–669.CrossRefGoogle Scholar
  73. White JF and Wang RY (1983): Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057.CrossRefGoogle Scholar
  74. Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY, Cooper TB and Brodie JD (1989): Dopamine blockade and clinical response: Evidence for two biological subgroups of schizophrenia. Am J Psychiat 146: 905–908.Google Scholar
  75. Wolkin A, Brodie JD, Barouche F, Rotrosen J, Wolf AP, Smith M, Fowler J and Cooper TB (1989): Dopamine receptor occupancy and plasma haloperidol levels. Arch Gen Psychiat 46: 482–484.CrossRefGoogle Scholar
  76. Wong DF, Braestrup C, Harris J, Dannals RF, Ravert H, Wilson A, Williams J, Links J, Scheffel U, Tuama L, Fanaras G, Moser H, Naidu S, Nyhan W, Wagner HN Jr and Gjedde A (1986a): Assessment of D1 and D2 dopamine receptors in Lesch-Nyhan syndrome by positron emission tomography. J Nucl Med 27: 1027.Google Scholar
  77. Wong DF, Brousselle E, Wand G, Villemagne V, Dannals RF, Links JM, Zacur HA, Harris J, Naidu S, Braestrup C, Wagner HN Jr and Gjedde A (1988): In vivo measurement of dopamine receptors in human brain by positron emission tomography: age and sex differences. In: Central Determinants of Age-Related Declines in Motor Function, Joseph JA, ed. New York: Annals New York Academy of Sciences.Google Scholar
  78. Wong DF, Gjedde A and Wagner HN Jr (1986b): Quantification of neuroreceptors in the living human brain. Part I. Association rate of irreversibly bound ligands. J Cereb Blood Flow Metab 6: 137–14.6CrossRefGoogle Scholar
  79. Wong DF, Gjedde A, Wagner HN Jr, Dannals RF, Douglass KH, Links JM and Kuhar MJ (1986c): Quantification of neuroreceptors in the living human brain. Part II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 6: 147–153.CrossRefGoogle Scholar
  80. Wong DF, Ross C, Wagner HN Jr, Pearlson G, Links JM, Brousolle E, Fanaras G, Fischman M, Danashvar D, Wilson A, Ravert H and Dannals RF (1986d): The effect of IV cocaine on the kinetics of [11C]-3-n-methylspiperone binding in the human caudate. J Nucl Med 27:1074.Google Scholar
  81. Wong DF, Wagner HN Jr, Coyle J, Snyder S, LaFrance N, Bice A, Dannals R, Links J, Paulos M, Hoehn-Saric R, Tune L and Kuhar MJ (1985): Assessment of dopamine receptor blockade by neuroleptic drugs in the living human brain. J Nucl Med 26: 52.Google Scholar
  82. Wong DF, Wagner HN Jr, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD and Kuhar MJ (1984): Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396.CrossRefGoogle Scholar
  83. Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, OTuama LA, Snyder SH, Kuhar MJ and Gjedde A (1986e): Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive Schizophrenics. Science 234: 1558–1563.CrossRefGoogle Scholar
  84. Wong DF, Young LT, Pearlson G, Singer H, Tune L, Ross C, Dannals RF, Wilson AA, Ravert HT, Links J, Wagner HN Jr and Gjedde, A (1989a): D2 dopamine receptor densities measured by PET are elevated in several neuropsychiatric disorders. J Nucl Med 30:731.Google Scholar
  85. Wong DF, Gjedde A, Young D, Tune L, Pearlson G, Shaya E, Young T, Chan B, Burkhardt D, Wilson PD, Dannals, RF, Wilson AA, Ravert HT, Natarajan TK and Wagner HN Jr (1991b): PET demonstrates reduced NMSP receptor affinity in psychosis. J Cereb Blood Flow Metab (suppl): S650.Google Scholar
  86. Wuesel F-A, Farde L, Nordstrom AL and Sedvall G (1990): Central D1-and D2-receptor occupancy during antipsychotic drug treatment. Prog Neuro-Psychopharmacol Biol Psychiat 14: 759–767.CrossRefGoogle Scholar
  87. Young LT, Wong DF, Goldman S, Minkin E, Chen C, Matsumura K, Scheffel U and Wagner HN Jr (1991): Effects of endogenous dopamine on kinetics of [3H]N-Methylspiperone and [3H]Raclopride binding in rat brain. Synapse 9: 188–194.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Dean F. Wong
    • 1
  • Babington Yung
    • 1
  1. 1.Department of Radiology, Division of Nuclear MedicineJohns Hopkins University School of MedicineUSA

Personalised recommendations