Positron Emission Tomography, Enzymes and Drug Research and Development

  • Joanna S. Fowler
  • Nora D. Volkow
  • Alfred P. Wolf


The use of Positron Emission Tomography (PET) to examine drug pharmacokinetics and pharmacodynamics and the relationship of these properties to the behavioral, therapeutic and toxic properties of drugs is emerging as a powerful new scientific tool (Fowler et al., 1990). PET provides a new perspective on drug research by virtue of its ability to directly assess different parameters such as absolute uptake, regional distribution, kinetics, pharmacological profile and metabolic effects of drugs in human subjects. For example, the labeled drug itself can be used to measure the absolute uptake, regional distribution and kinetics at its site of action in the body. Additionally, the labeled drug and whole body PET can be used to determine the target organs for the drug and its labeled metabolites, thus providing information on potential toxic effects as well as tissue half-lives. On the other hand, different labeled tracers can be used to assess the effects of a drug on particular physiological or functional processes. For example, with appropriate radiotracers, the effects of a drug on metabolism, neurotransmitter activity, blood flow, enzyme activity or other processes can be probed. Because of the short half-life of the positron emitters, these parameters can be assessed directly in the human body both in normal controls and in patients and serial studies can be done where a subject serves as his own control.


Positron Emission Tomography Angiotensin Convert Enzyme Monoamine Oxidase Positron Emission Tomography Tracer Deuterium Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles RH and Maycock AL (1976): Suicide enzyme inactivators. Acct Chem Res 9: 313–319.CrossRefGoogle Scholar
  2. Adam MJ, McCarter JD and Withers SG (1992): Synthesis and evaluation of 2-deoxy-2-[18F]-fluoro-ß-mannosyl fluoride as a mechanism-based imaging probe for glycosidase enzymes. IXth International Symposium on “Radiopharmaceutical Chemistry”, Paris, France, April 4–10: C9 (Abst).Google Scholar
  3. Arnett CD, Fowler JS, MacGregor RR, Schlyer DJ and Wolf AP (1987): Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using [11C]-L-deprenyl. J Neurochem 49: 522–527.CrossRefGoogle Scholar
  4. Belleau B and Moran J (1963): Deuterium isotope effects in relation to the chemical mechanisms of monoamine oxidase. Ann NY Acad Sci 107: 822–839.CrossRefGoogle Scholar
  5. Bench CJ, Price GW, Lammertsma AA, Cremer JC, Luthra SK, Turton D, Dolan RJ, Kettler R, Dingemanse J, DaPrada M, Biziere K, McClelland GR, Jamieson VL, Wood ND and Frackowiak RSJ (1991): Measurement of human cerebral monoamine oxidase type B (MAO-B) activity with positron emission tomography (PET): A dose ranging study with the reversible inhibitor RO19–6327. Eur J Clin Pharmacol 10: 169–173.Google Scholar
  6. Birkmayer W and Riederer P (1984): Deprenyl prolongs the therapeutic efficacy of combined L-DOPA in Parkinson’s disease. Adv Neurol 40: 475–481.Google Scholar
  7. Bonnot Lours S, Prenant C and Crouzel C (1992): Synthesis of [11C]methylisocyanate. Application to the labelling of a potent acetylcholinesterase inhibitor: [11C]physostigmine. IXth International Symposium on “Radiopharmaceutical Chemistry”, Paris, France, April 4–10: D4 (abst).Google Scholar
  8. Brust P, Andersen BR, Diksic M and Gjedde A (1991): XVI-1. Monoamine oxidase B activity in human brain measured with L-[11C]deprenyl. J Cereb Blood Flow Metab 11(Suppl 2): S227.Google Scholar
  9. Cesura AM, Imhof R, Galva MD, Kettler R and DaPrada M (1988): Interactions of the novel inhibitors of MAO B RO 19–6327 and RO 16–6491 with the active site of the enzyme. Pharmacol Res Commun 20: 51–61.CrossRefGoogle Scholar
  10. Cohen G and Spina MB (1989): Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26: 689–690.CrossRefGoogle Scholar
  11. Crout JR (1989): Enzyme inhibitors as drugs. In: Enzymes as Targets for Drug Design, Palfreyman MG, McCann PP, Lovenberg W, Temple JG Jr and Sjoerdsma A, eds. San Diego: Academic Press.Google Scholar
  12. DeJesus OT, Holden JE, Endues C, Murali D, Oakes TR, Shelton S, Uno H, Houser D, Freund L, Perlman SB, Nickles RJ (1992): Visualization of dopamine nerve terminals by positron tomography using [18F]-fluoro-ß-fluoromethylene-m-tyrosine. Neuroscience J: in press.Google Scholar
  13. Dewey SL, Smith GS, Logan J, Brodie JD, Yu D-W, Fernen RA, King PT, MacGregor RR, Martin TP, Wolf AP, Volkow ND and Fowler JS (1992): GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neuroscience: in press.Google Scholar
  14. Ding Y-S, Antoni G, Fowler JS, Wolf AP, Langstrom B (1989): Synthesis of L-[5–11C]ornithine. J Label Cmpds Radiopharm 27: 1079–1090.CrossRefGoogle Scholar
  15. Douglas WW (1985): Polypeptides — Angiotensin, plasma kinins and others. In: The Pharmacological Basis of Therapeutics, Gilman AG and Goodman LS, eds. New York: Macmillan Publishing Co.Google Scholar
  16. Elsinga PH, Daemen BJG and Vaalburg W (1989): Ornithine decarboxylase activity in tumor: A study with L-[l-14C]- and L-[5-14C]-Ornithine. J Label Cmpds Radiopharm 26: 481 (abst).CrossRefGoogle Scholar
  17. Farde L, Hall H, Ehrin E and Sedvall G (1986): Quantitative analysis of dopamine-D2 receptor binding in the living human brain by positron emission tomography. Science 231: 258–261.CrossRefGoogle Scholar
  18. Finberg JPM and Youdim MBH (1983): Selective MAO A and B inhibitors: Their mechanism of action and pharmacology. Neuropharmacology 22: 441–446.CrossRefGoogle Scholar
  19. Firnau G, Garnett ES, Chirakal R, Sood S, Nahmias C and Schrobilgen G (1986): [18F]Fluoro-L-dopa for the in vivo study of intracerebral dopamine. Appl Radiat Isot 37: 669–675.CrossRefGoogle Scholar
  20. Fowler JS (1990): Enzyme activity: Monoamine oxidase. In: Quantitative Imaging: Neuroreceptors, Neurotransmitters, and Enzymes, Frost JJ and Wagner HN Jr, eds. New York: Raven Press.Google Scholar
  21. Fowler CJ, Oreland L and Callingham BA (1981): The acetylenic monoamine oxidase inhibitors clorgyline, deprenyl, pargyline and J-508: Their properties and applications. J Pharm Pharmacol 33: 341–347.CrossRefGoogle Scholar
  22. Fowler CJ, Oreland L, Marcusson J and Winblad B (1980): Titration of human brain monoamine oxidase-A and -B by clorgyline and L-deprenyl. Naunyn-Schmiedberg’s Arch Pharmacol 311: 263–272.CrossRefGoogle Scholar
  23. Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, Christman D, Logan J, Smith M, Sachs H, Aquilonius SM, Bjurling P, Halldin C, Hartwig P, Leenders KL, Lundquist H, Oreland L, Stalnacke C-G and Langstrom B (1987): Mapping human brain monoamine oxidase A and B with 11C-suicide inactivators and positron emission tomography. Science 235: 481–485.CrossRefGoogle Scholar
  24. Fowler JS, Wolf AP and Volkow ND (1990): New directions in positron emission tomography-Part II. In: Annual Reports in Medicinal Chemistry, Bristol JA, ed. San Diego: Academic Press, Inc.Google Scholar
  25. Fowler JS, Wolf AP, MacGregor RR, Dewey SL, Logan J, Schlyer DJ and Langstrom B (1988): Mechanistic positron emission tomography Studies: Demonstration of a deuterium isotope effect in the monoamine oxidase-catalyzed binding of [11C]L-deprenyl in living baboon brain. J Neurochem 51: 1524–1534.CrossRefGoogle Scholar
  26. Friedhoff AJ (1990): Deprenyl and the progression of Parkinson’s Disease. Science 249: 303.Google Scholar
  27. Gallagher BM, Fowler JS, MacGregor RR and Wolf AP (1977): Evaluation of radiorespirometry for the determination of monoamine oxidase activity in vivo utilizing [11C]octylamine as a substrate. Biochem Pharmacol 26: 1917–1922.CrossRefGoogle Scholar
  28. Gjedde A, Reith J, Dyve S, Leger G, Guttman M, Diksic M, Evans A and Kuwabara H (1991): Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci 88: 2721–2725.CrossRefGoogle Scholar
  29. Halldin C, Bjurling P, Stalnacke C-G, Jossan SS, Oreland L and Langstrom B (1989): 11C-Labelling of dimethylphenethylamine in two different positions and biodistribution studies. Appl Radiat Isot 40: 557–560.CrossRefGoogle Scholar
  30. Hare MLC (1928): Tyramine oxidase. I. A new enzyme system in liver. Biochem J 22: 968–979.Google Scholar
  31. Hashimoto K, Inoue O, Suzuki K, Yamasaki F and Kojima M (1986): Deuterium isotope effect of [11C]N,N-dimethylphenethyl-amine-α,α-d2; reduction in metabolic trapping rate in brain. Nucl Med Biol 13: 79–80.Google Scholar
  32. Heikkila RE, Manzino L, Cabbat FS and Duvoisin RC (1984): Protection against the dopaminergic neurotoxicity of l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature (London) 311: 467–469.CrossRefGoogle Scholar
  33. Hwang D-R, Eckelman WC, Mathias CJ, Petrillo EW Jr, Lloyd J and Welch MJ (1991): Positron-labeled angiotensin-converting enzyme (ACE) inhibitor: Fluorine-18-fluorocaptopril. Probing the ACE activity in vivo by positron emission tomography. J Nucl Med 32: 1730–1737.Google Scholar
  34. Imahori Y, Fujii R, Ueda S, Ido T, Nishino H, Moriyama Y, Yamamoto YL and Nakahashi H (1991): No-carrier-added carbon-11-labeled sn-1,2- and sn-l,3-diacylglycerols by [11C]propyl ketene method. J Nucl Med 32: 1622–1626.Google Scholar
  35. Inoue O, Tominaga T, Yamasaki T and Kinemuchi H (1985): Radioactive N,N-dimethylphenylethylamine: A selective radiotracer for in vivo measurement of monoamine oxidase-B activity in the brain. J Neurochem 44: 210–216.CrossRefGoogle Scholar
  36. Ishiwata K, Ido T, Yanai K, Kawashima K, Miura Y, Monma M, Watanuki S, Takahashi T and Iwata R (1985): Biodistribution of a positron-emitting suicide inactivator of monoamine oxidase, carbon-11 pargyline, in mice and a rabbit. J Nucl Med 26: 630–636.Google Scholar
  37. Ishiwata K, Abe Y, Matsuzawa T and Ido T (1988): Tumor uptake studies of D,L-[5-14C]ornithine and D,L-2-difluoromethyl[5-14C]ornithine. Int J Radiat Appl Instrum Part B 15: 119.Google Scholar
  38. Johnston JP (1968): Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297.CrossRefGoogle Scholar
  39. Knoll J and Magyar K (1972): Some puzzling effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408.Google Scholar
  40. Kofman OS (1991): Deprenyl: Protective vs. symptomatic effect. Le Canadian J Neurol Sci 18: 83–85.Google Scholar
  41. Kubota Y, Inagaki S, Kito S and Wu JY (1987): Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum. Brain Res 406: 147–156.CrossRefGoogle Scholar
  42. Lammertsma AA, Bench CJ, Price GW, Cremer JE, Luthra SK, Turton D, Wood ND and Frackowiak RSJ (1991): Measurement of cerebral monoamine oxidase B activity using L-[11C]deprenyl and dynamic positron emission tomography. J Cereb Blood Flow Metab 11: 545–556.CrossRefGoogle Scholar
  43. Langston JW (1990): Selegiline as neuroprotective therapy in Parkinson’s disease. Neurology 40(Suppl 3): 61–66.Google Scholar
  44. Livni E, Fischman AJ, Ray S, Sinclair I, Elmaleh DR, Alpert NM, Weiss S, Correia JA, Webb D, Dahl R, Robeson W, Margouleff D, Liss R, Strauss HW and Rubin RH (1992): Synthesis of 18F-labeled fluconazole and positron emission tomography studies in rabbits. Nucl Med Biol 19: 191–199.Google Scholar
  45. MacGregor RR, Halldin C, Fowler JS, Wolf AP, Arnett CD, Langstrom B and Alexoff D (1985): Selective, irreversible in vivo binding of [11C]clorgyline and [11C]-L-deprenyl in mice: Potential for measurement of functional monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmacol 34: 3207–3210.CrossRefGoogle Scholar
  46. MacGregor RR, Fowler JS and Wolf AP (1988): Synthesis of suicide inhibitors of monoamine oxidase: Carbon-11 labeled clorgyline, L-deprenyl and D-deprenyl. J Label Cmpds Radiopharm 25: 1–9.CrossRefGoogle Scholar
  47. Maycock AL, Abeles RH, Salach JI and Singer TP (1976): The structure of the covalent adduct formed by the interaction of 3-dimethylamino-1-propyne and the flavine of mitochondrial amine oxidase. Biochemistry 15: 114–125.CrossRefGoogle Scholar
  48. Melega WP, Grafton ST, Huang S-C, Satyamurthy N, Phelps ME and Barrio JR (1991): L-6-[18F]Fluoro-DOPA metabolism in monkeys and humans: Biochemical parameters for the formulation of tracer kinetic models with positron emission tomography. J Cereb Blood Flow Metab 11: 890–897.CrossRefGoogle Scholar
  49. Mulholland GK, Sugimoto H, Jewett DM and Kilbourn MR (1989): Simple preparation of a novel C-11 acetylcholinesterase inhibitor. J Nucl Med 30: 822.Google Scholar
  50. Muller-Platz CM, Kloster G, Legler G and Stocklin G (1982): 18F-Fluoroacetate: An agent for introducing no-carrier-added fluorine-18 into urokinase without loss of biological activity. J Label Cmpds Radiopharm. 19: 1645–1646.Google Scholar
  51. Murali D, DeJesus OT, Sunderland JJ and Nickles RJ (1992): [18F]-Fluoro-ß-fluoromethylene-m-tyrosine analogs, potential PET agents for presynaptic dopamine terminals: Synthesis and spectroscopic characterization. Int J Radiat Appl Instrum Part A: in press.Google Scholar
  52. Murphy DL, Cohen RM, Siever LJ, Roy B, Karoum F, Wyatt RJ, Garrick NA and Linnoila M (1983): Clinical and laboratory studies with selective monoamine-oxidase-inhibiting drugs. Mod Probl Pharmacopsychiat 19: 287–303.Google Scholar
  53. Oreland L (1991): Monoamine oxidase, dopamine and Parkinson’s disease. Acta Neurol Scand 84(Suppl 136): 60–65.CrossRefGoogle Scholar
  54. Palfreyman MG, Schechter PJ, Buckett WR, Tell GP and Koch-Weser J (1981): The pharmacology of GABA-transaminase inhibitors. Biochem Pharmacol 30: 817–824.CrossRefGoogle Scholar
  55. Palfreyman MG, McDonald IA, Fozard JR, Mely Y, Sleight AJ, Zreika M, Wagner J, Bey P and Lewis PJ (1985): Inhibition of monoamine oxidase selectively in brain monoamine nerves using the bioprecursor (E)-ß-fluoromethylene-m-tyrosine (MDL 72394), a substrate for aromatic L-amino acid decarboxylase. J Neurochem 45: 1850–1860.CrossRefGoogle Scholar
  56. Patlak CS, Blasberg RG and Fenstermacher JD (1983): Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7.CrossRefGoogle Scholar
  57. Pare CMB (1972): Clinical implications of monoamine oxidase inhibition. In: Monoamine OxidaseNew Vistas. Advances in Biochemical Psychopharmacology, Vol 5, Costa E and Greengard P, eds. New York: Raven Press.Google Scholar
  58. Reivich M, Kuhl D, Wolf AP, Greenberg J, Phelps M, Ido T, Casella V, Fowler JS, Hoffman E, Alavi A, Som P and Sokoloff L (1979): The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137.Google Scholar
  59. Robinson DS, Davis JM, Nies A, Colburn RW, Davis JN, Bourne HR, Bunney WE, Shaw DM and Coppen A J (1972): Aging, monoamines, and monoamine oxidase levels. Lancet 1: 290–291.CrossRefGoogle Scholar
  60. Robinson JB (1985): Stereoselectivity and isoenzyme selectivity of monoamine oxidase inhibitors: Enantiomers of amphetamine, N-methylamphetamine and deprenyl. Biochem Pharmacol 34: 4105–4108.CrossRefGoogle Scholar
  61. Sammes PG (1990): Enzymes and other drug targets. In: Comprehensive Medicinal Chemistry, The Rational Design, Mechanistic Study and Therapeutic Application of Chemical Compounds, Vol 2, Hansch C, Sammes PG and Taylor JB, eds. Oxford: Pergamon Press.Google Scholar
  62. Salter M, Schneider HH and Stephens DN (1988): Treatment strategies for senile dementia: antagonist β-carbolines. TINS 11: 13–17.Google Scholar
  63. Shinotoh H, Inoue O, Suzuki K, Yamasaki T, Iyo M, Hashimoto K, Tominaga T, Itoh T, Teteno Y and Ikehira H (1987): Kinetics of [11C]N,N-dimethylphenylethylamine in mice and humans: Potential for measurement of brain MAO-B activity. J Nucl Med 28: 1006–1011.Google Scholar
  64. Tetrad JW and Langston JW (1989): The effect of deprenyl (selegiline) on the natural history of Paikinson’s disease. Science 245: 519–522.CrossRefGoogle Scholar
  65. The Parkinson’s Study Group (1989): Effect of deprenyl on the progression of disability in early Paikinson’s disease. N Engl J Med 321: 1364–1371.CrossRefGoogle Scholar
  66. Waley SG (1985): Kinetics of suicide substrates. Biochem J 227: 843–849.Google Scholar
  67. Walsh C (1982): Suicide substrates: Mechanism-based enzyme inactivators. Tetrahedron 38: 871–909.CrossRefGoogle Scholar
  68. Westlund KN, Denney RM, Kochersperger LM, Rose RM and Abell CW (1985): Distinct monoamine oxidase A and B populations in primate brain. Science 230: 181–183.CrossRefGoogle Scholar
  69. Withers SG, Street IP, Bird P and Dolphin DH (1987): 2-Deoxy-2-fluoroglucosides: A novel class of mechanism-based glucosidase inhibitors. J Am Chem Soc 109: 7530–7531.CrossRefGoogle Scholar
  70. Yu PH, Barclay S, Davis B and Boulton AA (1981): Deuterium isotope effects on the enzymatic oxidative deamination of trace amines. Biochem Pharmacol 30: 3089–3094.CrossRefGoogle Scholar
  71. Zeller EA, Barsky J and Berman ER (1955): Amine oxidases. XI. Inhibition of monoamine oxidase by 1-isonicotinyl-2-isopropylhydrazine. J Biol Chem 214: 267–274.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Joanna S. Fowler
    • 1
  • Nora D. Volkow
    • 1
    • 2
  • Alfred P. Wolf
    • 1
  1. 1.Department of ChemistryBrookhaven National LaboratoryUSA
  2. 2.Medical DepartmentBrookhaven National LaboratoryUSA

Personalised recommendations