Skip to main content

Mechanisms of Asymmetrical Development of the Human CNS

  • Chapter

Abstract

Does the asymmetrical development of the CNS have a genetic basis? Arguments for and against this idea have been made frequently in the past (e.g., Annett, 1985a; Bianki et al., 1979; Collins, 1977; Corballis and Morgan, 1978; Levy, 1977; Morgan, 1977) without resolving the basic question. Any theory that attempts to provide a genetic basis for the occurrence of asymmetries in the human nervous system has to accommodate a number of facts and overcome a variety of conceptual difficulties. In addition, a plausible genetic hypothesis needs accompanying plausible developmental mechanisms, complete with cell biological and molecular facets, through which the gene(s) could act to produce an asymmetric organization in the adult structure. It is the purpose of this chapter to speculate on the possible nature of genetic and developmental mechanisms that could produce structural asymmetries in the adult CNS. It is hoped that these speculations will provide both stimulus and a foundation for future experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzelius BA (1976): A human syndrome caused by immotile cilia. Science 193:317–319

    Article  Google Scholar 

  • Annett M (1985a): Left-Right, Hand and Brain: The Right Shift Theory. New Jersey: Erlbaum

    Google Scholar 

  • Annett M (1985b): Which theory fails? A reply to McManus. Brit J Psychol 76:17–29

    Article  Google Scholar 

  • Bianki VL, Kaidanov LZ, Novikov SN (1979): Genetic analysis of right-and left-handedness in the house mouse (Mus musculus L.) Zhurnal Vysshei Nervnoi Deyate Vnosti 29:1239–1247 (in Russian)

    Google Scholar 

  • Brueckner M, D’Eustachio P, Horwich AL (1989): Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc Natl Acad Sci USA 86:5035–5038

    Article  Google Scholar 

  • Bryden MP (1982): Laterality: Functional Asymmetry in the Intact Brain. New York: Academic Press

    Google Scholar 

  • Chije G, Dooling EC, Gilles FH (1977a): Gyral development of the human brain. Ann Neurol 1:86–93

    Article  Google Scholar 

  • Chije G, Dooling EC, Gilles FH (1977b): Left-right asymmetries of the temporal speech areas of the human fetus. Arch Neurol 34:346–348

    Article  Google Scholar 

  • Collins RL (1977): Toward an admissible genetic model for the inheritance of the degree and direction of asymmetry. In: Lateralization in the Nervous System, New York: Academic Press, pp. 137–150

    Google Scholar 

  • Corballis MC, Morgan MJ (1978): On the biological basis of human laterality: I. Evidence for a maturational left-right gradient. Behav and Brain Sci 2:261–336

    Article  Google Scholar 

  • Green E (1981): Genetics and Probability in Animal Breeding Experiments. London: Macmillan Publishers Ltd

    Google Scholar 

  • Hécaen H, De Agostini M, Monzon-Montes A (1981): Cerebral organization in left-handers. Brain Lang 12:261–284

    Article  Google Scholar 

  • Killackey H (May, 1990). Development of callosal pathways in experimental primates. Paper presented at the Third International Brain Workshop: Neu-rodevelopment, Aging, and Cognition; Dubrovnik, Yugoslavia

    Google Scholar 

  • Kimble J (1981): Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. PhD Thesis, University of Colorado, Boulder

    Google Scholar 

  • Kimble J, Hirsh D (1979): Postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70:396–417

    Article  Google Scholar 

  • Lander ES, Bottstein D (1989): Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Google Scholar 

  • Layton WM Jr (1976): Random determination of a developmental process. J Hered 67:336–338

    Google Scholar 

  • LeMay M, Culebras A (1972): Human brain. Morphologic differences in the hemispheres demonstrable by carotid arteriography. New Eng J Med 287: 168–170

    Article  Google Scholar 

  • Levy J (1977): The origins of lateral asymmetry. In: Lateralization in the Nervous System, Harnad S, ed., New York: Academic Press, pp. 195–212

    Google Scholar 

  • Levy J, Nagylaki T (1972): A model for the genetics of handedness. Genetics 72:117–128

    Google Scholar 

  • McManus IC (1985a): Right-and left-hand skill: Failure of the right shift model. Brit J Psychol 76:1–16

    Article  Google Scholar 

  • McManus IC (1985b): On testing the right shift theory: A reply to Annett. Brit J Psychol 76:31–34

    Article  Google Scholar 

  • McManus IC (1985c): Handedness, language dominance and aphasia: a genetic model. Psychol Med Monograph Suppl 8:1–40

    Google Scholar 

  • Milner B (1974): Hemispheric specialization: scope and limits. In: The Neurosciences: Third Study Program, Schmitt FO, Worden FG, eds. Cambridge, MA: MIT Press, pp. 75–89

    Google Scholar 

  • Morgan M (1977): Embryology and inheritance of asymmetry. In: Lateralization in the Nervous System, Harnad S, ed., New York: Academic Press, pp. 173–194

    Google Scholar 

  • Nowakowski RS (1987): Basic concepts of CNS development. Child Development 58:568–595

    Article  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988): Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M and Raichle ME (1988): Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    Article  Google Scholar 

  • Plomin R (1990): The role of inheritance in behavior. Science 248:183–188

    Article  Google Scholar 

  • Segal N (1989): Origins and implications of handedness and relative birth weight for IQ in monozygotic twin pairs. Neuropsychologia 27:549–561

    Article  Google Scholar 

  • Seydoux G, Greenwald I (1989): Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell 57:1237–1245

    Article  Google Scholar 

  • Sternberg PW, Horvitz HR (1989): The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C elegans. Cell 58:679–693

    Google Scholar 

  • Sulston JE (1976): Post-embryonic development in the ventral cord of Caenorhab-ditis elegans. Phil Trans R Soc Lond (Biol) 275:287–297

    Article  Google Scholar 

  • Sulston JE, Horvitz HR (1977): Postembryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Article  Google Scholar 

  • Sulston JE, White JG (1980): Regulation and cell autonomy during postembryonic development in Caenorhabditis elegans. Dev Biol 78:577–597

    Article  Google Scholar 

  • Sulston JE, Albertson DG, Thompson JN (1980): The Caenorhabditis elegans male: Postembryonic development of nongonadal structures. Dev Biol 78:542–576

    Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thompson JN (1983): The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  Google Scholar 

  • Torgerson J (1950): Situs inversus, asymmetry, and twinning. Am J Human Genetics 2:361–370

    Google Scholar 

  • Witelson SF (1980): Neuroanatomical asymmetry in left handers: A review and implications for functional asymmetry. In: Neuropsychology of Left-handed-ness, Herron J, ed. New York: Academic Press, pp. 79–113

    Google Scholar 

  • Witelson SF (1985): The brain connection: The corpus callosum is larger in left handers. Science 229:665–668

    Article  Google Scholar 

  • Witelson SF (1989): Hand and sex differences in the isthmus and genu of the human corpus callosum: A postmortem morphological study. Brain 112:799–835

    Article  Google Scholar 

  • Witelson SF, Goldsmith CH (1990): The relationship of hand preference to anatomy of the corpus callosum in men. Brain Research, in press.

    Google Scholar 

  • Witelson SF, Kigar DL (1988): Asymmetry in brain function follows asymmetry in anatomical form: Gross, microscopic, postmortem and imaging studies. In: Handbook of Neuropsychology, Vol. 1, Boller F, Grafman J, eds. The Netherlands: Elsevier Science, pp. 111–142

    Google Scholar 

  • Witelson SF, Nowakowski RS (1991): Left out axons make men right: an hypothesis for the origin of handedness and functional symmetry. Neuropsychologia 29:327–333

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Nowakowski, R.S. (1992). Mechanisms of Asymmetrical Development of the Human CNS. In: Kostović, I., Knežević, S., Wisniewski, H.M., Spilich, G.J. (eds) Neurodevelopment, Aging and Cognition. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6805-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6805-2_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6807-6

  • Online ISBN: 978-1-4684-6805-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics