Anoxia and Memory Processes

  • K. Krnjević
  • Y. Z. Xu


With few exceptions, mammals cannot function for more than very brief periods in the absence of an adequate supply of O2 (cf. Hochachka, 1986). Indeed their very survival is jeopardized by anoxia prolonged beyond a few minutes.


Dentate Gyrus Hippocampal Slice Synaptic Response Tetanic Stimulation EPSP Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allweis C, Gibbs ME, Ng T, Hodge RJ (1984): Effects of hypoxia on memory consolidation: implications for a multistage model of memory. Behav Brain Res 11:117–121CrossRefGoogle Scholar
  2. Ben-Ari Y (1990): Galanin and glibenclamide modulate the anoxic release of glutamate in rat CA3 hippocampal neurons. Eur J Neurosci 2:62–68CrossRefGoogle Scholar
  3. Ben-Ari Y, Krnjevic K, Crepel V (1990): Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neurosci 37:55–60CrossRefGoogle Scholar
  4. Berne RM, Rubio R, Curnish R (1974): Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271Google Scholar
  5. Bert P (1878): La pression barométrique. Paris: MassonGoogle Scholar
  6. Bliss TVP, Lømo T (1973): Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetised rabbit following stimulation of the perforant path. J Physiol 232:331–356Google Scholar
  7. Bures J, Buresova O, Krivanek J (1974): The Mechanism and Applications of Leao’s Spreading Depression of Electroencephalographic Activity. Prague: Academia Publishing House of the Czechoslovak Academy of SciencesGoogle Scholar
  8. D’Andrea JA, Kesner RP (1973): The effects of ECS and hypoxia on information retrieval. Physiology and Behavior 11: 747–752CrossRefGoogle Scholar
  9. Davies SN, Lester RAJ, Reymann KG, Collingridge GL (1989): Temporally distinct pre-and postsynaptic mechanisms maintain long-term potentiation. Nature 338:500–552CrossRefGoogle Scholar
  10. Dingledine R (1984): Brain Slices. New York: Plenum PressGoogle Scholar
  11. Duchen MR, Valdeolmillos M, O’Neill SC, Eisner DA (1990): Effects of metaolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J Physiol 424:411–426Google Scholar
  12. Eccles JC (1964): The Physiology of Synapses. Berlin: Springer-VerlagCrossRefGoogle Scholar
  13. Eckert R, Chad JE (1984): Inactivation of Ca channels. Progress Biophys Molec Biol 44:215–267CrossRefGoogle Scholar
  14. Ernsting J (1986): The effects of hypoxia upon human performance and the electroencephalogram. In: Oxygen Measurements in Blood and Tissues, Payne JP and Hill DW, eds. London: J and A Churchill Ltd, pp. 245–259Google Scholar
  15. Frieder B, Allweis C (1982): Delayed post hypoxic transient amnesia is not associated with electrical brain seizures. Physiology and Behavior 1929:1059–1064CrossRefGoogle Scholar
  16. Fujiwara N, Higashi H, Shimoji K, Yoshimura M (1987): Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol 384:131–151Google Scholar
  17. Gibbs ME, Ng KT (1976): Memory formation: A new three-phase model. Neu-rosci Letts 2:165–169CrossRefGoogle Scholar
  18. Haldane JS, Priestley JG (1935): Respiration. New Haven: Yale University PressGoogle Scholar
  19. Hansen AJ, Hounsgaard J, Jahnsen H (1982): Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol Scand 115:301–310CrossRefGoogle Scholar
  20. Hochachka PW (1986): Defense strategies against hypoxia and hypothermia. Science 231:234–241CrossRefGoogle Scholar
  21. Ito M (1976): Roles of GABA neurons in integrated functions of the vertebrate CNS. In: GABA in Nervous System Function, Roberts E, Chase TN, Tower DB, eds. pp. 427–448Google Scholar
  22. Krnjevic K, Ben-Ari Y (1989): Anoxic changes in dentate granule cells. Neuroscience Letts 107:89–93CrossRefGoogle Scholar
  23. Krnjevic K, Cherubini E, Ben-Ari Y, (1989): Anoxia on slow inward currents of immature hippocampal neurons. J Neurophysiol 62:896–906.24Google Scholar
  24. Krnjevic K, Leblond JE (1987): Anoxia reversibly suppresses neuronal 20 calcium currents in rat hippocampal slices. Can J Physiol Pharmacol 65:2157–2161CrossRefGoogle Scholar
  25. Krnjevic K, Leblond J (1989): Changes in membrane currents of hippocampal neurons evoked by brief anoxia. J Neurophysiol 62:15–30Google Scholar
  26. Krnjevic K, Leblond J (1988): Are there hippocampal ATP-sensitive K-channels that are activated by anoxia? Pflugers Archiv Supp 411:R145.Google Scholar
  27. Krnjevic K, Xu Y (1989): Dantrolene suppresses the hyperpolarization or outward current observed during anoxia in hippocampal neurons. Can J Physiol Pharmacol 67:1602–1604CrossRefGoogle Scholar
  28. Leao AAP (1944): Spreading depression of activity in the cerebral cortex. J Neurophysiol: 359–390Google Scholar
  29. Leblond J (1988): Anoxia and long-term potentiation (LTP) in the CA1 field of hippocampal slices of rats. J Physiol 406:38PGoogle Scholar
  30. Leblond J, Krnjevic K (1989): Hypoxic changes in hippocampal neurons. J Neurophysiol 62:1–14Google Scholar
  31. Lynch G, Baudry M (1984): The biochemistry of memory: a new and specific hypothesis. Science 224:1057–1063CrossRefGoogle Scholar
  32. Malenka RC, Kauer JA, Perkel DJ, Nicoll RA (1989) The impact of postsynaptic calcium on synaptic transmission—Its role in long-term potentiation. TINS 12:444–450Google Scholar
  33. Malinow R, Schulman H, Tsien RW (1989): Inhibition of postsynaptic PKC or Ca MKII blocks induction but not expression of LTP Science 245:862–866CrossRefGoogle Scholar
  34. Martin MR (1983): Naloxone and long term potentiation of hippocampal CA3 field potentials in vitro. Neuropeptides 4:45–50CrossRefGoogle Scholar
  35. McNaughton BL, Barnes CA, Rao G, Baldwin J, Rasmussen M (1986): Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information. J Neurosci 6:563–571Google Scholar
  36. Miller RJ (1990): Glucose regulated potassium channels are sweet news for neu-robiologists. TINS 13:197–199Google Scholar
  37. Misgeld U, Frotscher M (1982): Dependence of the viability of neurons in hippocampal slices on oxygen supply. Brain Res Bull 8:95–100CrossRefGoogle Scholar
  38. Nicholls DG (1989): Release of glutamate, aspartate, and y-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341CrossRefGoogle Scholar
  39. O’Keefe J, Nadel L (1978): The Hippocampus as a Cognitive Map. Oxford University PressGoogle Scholar
  40. Olton DS, Becker JT, Handelmann GE (1979): Hippocampus, space and memory. The Behavioral and Brain Sciences 2:313–365CrossRefGoogle Scholar
  41. Rawlins JNP (1985): Associations across time: The hippocampus as a temporary memory store. The Behavioral and Brain Sciences 8:479–496CrossRefGoogle Scholar
  42. Rossen R, Kabat H, Anderson JP (1943): Acute arrest of cerebral circulation in man. Arch Neurol Psychiat 50:510–528Google Scholar
  43. Squire LR (1987): Memory and Brain. New York: Oxford University PressGoogle Scholar
  44. Sugar O, Gerard RW (1938) Anoxia and brain potentials. J Neurophysiol 1:558–572Google Scholar
  45. Teyler TJ, DiScenna, H (1987): Long-term potentiation. Ann Rev Neurosci 10: 131–161CrossRefGoogle Scholar
  46. Xu Y, Krnjevic K (1990) Anoxia does not abolish LTP. Soc Neurosci Abstr 16:980Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • K. Krnjević
  • Y. Z. Xu

There are no affiliations available

Personalised recommendations