Advertisement

Prenatal Monoaminergic Innervation of the Cerebral Cortex: Differences between Rodents and Primates

  • B. Berger
  • C. Verney
  • P. S. Goldman-Rakic

Abstract

After the discovery of the cerebral monoaminergic systems by the Swedish group in the early sixties, the early prenatal ontogenesis of the monoaminergic neurons in the brainstem and the precocious development of their cortical projections were soon recognized (Lauder and Bloom, 1974; Nobin and Björklund, 1973; Olson and Seiger, 1972; Seiger and Olson, 1973) and presumed to be of great biological importance. The early arrival of aminergic afferents into the anläge of the cerebral cortex, concomitant to important intrinsic events in the neocortex (active stages of migration and differentiation) has led to the hypothesis that monoamines might exert an inductive or regulatory influence on the development of the cerebral cortex (see review in Berger and Verney, 1984). This hypothesis triggers new interest in view of the proposal that an involvement of the dopaminergic system in the pathophysiology of schizophrenia might be associated to an atrophy/aplasia process of developmental origin in the medial telencephalon (Roberts and Crow, 1987). Rodents have generally been used in the experimental models elaborated for understanding the anatomy and physiology of the cortical monoaminergic systems. However, in contrast with rodents, the cerebral cortex of primates is characterized by a protracted prenatal development, which allows for complex and prolongated interactive processes. Moreover, in adult primates, major changes are observed in the distribution of the cortical catecholaminergic innervation as compared to rodents.

Keywords

Cerebral Cortex Tyrosine Hydroxylase Marginal Zone Cortical Plate Dopaminergic Innervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman J, Bayer SA (1981): Development of the brain stem in the rat. V. Thymidine radioautographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198:677–716CrossRefGoogle Scholar
  2. Berger B, Thierry AM, Tassin JP, Moyne MA (1976): Dopaminergic innervation of the rat prefrontal cortex: a fluorescence histochemical study. Brain Res 106:133–145CrossRefGoogle Scholar
  3. Berger B, Febvret A, Greengard P, Goldman-Rakic PS (1990): DARPP-32, a phosphoprotein enriched in dopaminergic neurons bearing Dl receptors: distribution in the cerebral cortex of the newborn and adult monkey. J Comp Neurol 299:1–22CrossRefGoogle Scholar
  4. Berger B, Verney C (1984): Development of the catecholaminergic innervation in rat neocortex: morphological features. In: Neurology and Neurobiology, Descarries L, Reader TR, Jasper HH, eds. “Monoamine innervation of cerebral cortex,” Vol. 10, New York: Alan R. Liss, pp. 95–124Google Scholar
  5. Berger B, Verney C, Alvarez C, Vigny A, Helle KB (1985a): New dopaminergic terminal fields in the motor, visual (area 18b) and retrosplenial cortex in the young and adult rat. Immunocytochemical and catecholamine histochemical analyses. Neuroscience 15:983–998CrossRefGoogle Scholar
  6. Berger B, Verney C, Febvret A, Vigny A, Helle KB,: (1985b): Postnatal ontogenesis of the dopaminergic innervation in the rat anterior cingulate cortex (area 24). Immunocytochemical and catecholamine fluorescence histochemical analysis. Dev Brain Res 21:31–47CrossRefGoogle Scholar
  7. Berger B, Verney C, Gaspar P, Febvret A (1985): Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Dev Brain Res 23:141–144CrossRefGoogle Scholar
  8. Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988): Regional and laminar distribution of the dopamine and serotonin innervation in the Macaque cerebral cortex: a radioautographic study. J Comp Neurol 273:99–119CrossRefGoogle Scholar
  9. Björklund A, Lindvall O (1984): Dopamine containing systems in the central nervous system. In: Handbook of Neuroanatomy Vol. 2, Björklund A, Hokfelt T, eds. “Classical transmitters in the central nervous system,” Part 1, Elsevier, pp. 55–122Google Scholar
  10. D’Amato RJ, Blue ME, Argent B, Lynch DR, Lesbetter DL, Molliver ME, Snider SH (1987): Ontogeny of the serotoninergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Nat Acad Sci USA 84:4322–4326CrossRefGoogle Scholar
  11. Dekker JS, Rakic P (1980): Genesis of the motor cortex and ventroanterior and ventrolateral thalamic complex in Rhesus Monkey. Soc Neurosci Abst 6:205Google Scholar
  12. Descarries L, Lemay B, Doucet G, Berger B (1987): Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21:807–824CrossRefGoogle Scholar
  13. Feiten DL, Hallman H, Jonsson G (1982): Evidence for a neurotrophic role of noradrenaline neurons in the postnatal development of the cerebral cortex. J Neurocytol 11:119–135CrossRefGoogle Scholar
  14. Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989): Catecholamine innervation of the human cerebral cortex revealed by comparative immuno-histochemistry of tyrosine-hydroxylase and dopamine-β-hydroxylase. J Comp Neurol 279:249–271CrossRefGoogle Scholar
  15. Gaspar P, Berger B, Febvret A, Vigny A, Krieger-Poulet M, Borri-Voltattorni C (1987): Tyrosine hydroxylase immunoreactive neurons in the human cerebral cortex: a novel catecholaminergic group? Neurosci Lett 80:257–262CrossRefGoogle Scholar
  16. Goldman-Rakic PS (1981): Prenatal formation of cortical input and development of cytoarchitectonic compartments in the neostriatum of the Rhesus monkey. J Neurosci 7:721–735Google Scholar
  17. Goldman-Rakic PS (1987): Development of cortical circuitry and cognitive function. Child Dev 58:601–622CrossRefGoogle Scholar
  18. Goldman-Rakic PS, Isseroff A, Schwartz ML, Bugbee NM (1983): The neurobiology of cognitive development. In: Handbook of Child Psychology: Biology and Infancy Development, Mussen P, ed. New York: Wiley, pp. 281–344Google Scholar
  19. Goldman-Rakic PS, Leranth C, Williams SM (1989): Dopamine synaptic complex on pyramidal neurons in primate cerebral cortex. Proc Nat Acad Sci USA 86:9015–9019CrossRefGoogle Scholar
  20. Hicks SP, D’Amato CJ (1968): Cell migrations to the isocortex in the rat. Anat Rec 160:619–634CrossRefGoogle Scholar
  21. Huntley GW, Hendry SHC, Killackey HP, Chalupa LM, Jones EG (1988): Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex. Dev Brain Res 43:69–96CrossRefGoogle Scholar
  22. Kalsbeek A, De Bruin JPC, Feenstra MGP, Matthijssen MAH, Uylings HBM (1988a): Neonatal thermal lesions of the mesolimbocortical dopaminergic projection decrease foodhoarding behavior. Brain Res 475:80–90CrossRefGoogle Scholar
  23. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM (1988b): Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72CrossRefGoogle Scholar
  24. Kosofsky BE, Molliver ME, Morrison JH, Foote SL (1984): The serotonin and norepinephrine innervation of the primary visual cortex in the cynomologus monkey (Macaca fascicularis). J Comp Neurol 230:168–178CrossRefGoogle Scholar
  25. Kostović I, Goldman-Rakic PS (1983): Transient Cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447CrossRefGoogle Scholar
  26. Kostović I, Molliver ME (1974): A new interpretation of the laminar development of cerebral cortex: synaptogenesis in different layers of neopallium in the human fetus. Anat Rec 395Google Scholar
  27. Kostović I, Rakic P (1980): Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242CrossRefGoogle Scholar
  28. Kostović I, Rakic P (1990): Developmental history of the transient subplate zone in the visual and somatosensory cortex of the Macaque monkey and human brain. J Comp Neurol 297:441–470CrossRefGoogle Scholar
  29. Larroche JC (1981): The marginal layer in the neocortex of a 7 week-old human embryo. A light and electron microscopic study. Anat Emhryol 162:301–312CrossRefGoogle Scholar
  30. Lauder JM, Bloom FE (1974): Ontogeny of monoamine neurons in the locus ceruleus, raphe nucleus and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155:469–482CrossRefGoogle Scholar
  31. Levitt P, Moore RY (1979): Development of the noradrenergic innervation of neocortex. Brain Res 162:243–260CrossRefGoogle Scholar
  32. Levitt P, Rakic P (1982): The time of genesis, embryonic origin and differentiation of the brainstem monoamine neurons in the rhesus monkey. Dev brain Res 4:35–58CrossRefGoogle Scholar
  33. Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987): The distribution of tyrosine hydroxylase immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosc 7:279–290Google Scholar
  34. Lewis, DA, Foote, SL, Goldstein, M, Morrison, JH (1988): The dopaminergic innervation of monkey prefrontal cortex: A tyrosine hydroxylase immuno histochemical study. Brain Res. 449:225–243CrossRefGoogle Scholar
  35. Lewis DA, Morrison JH (1989): Noradrenergic innervation of monkey-prefrontal cortex: a dopamine-β-hydroxylase immunohistochemical study. J Comp Neurol 282:317–330CrossRefGoogle Scholar
  36. Lidov HGW, Molliver ME (1982a): An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull 8:389–430CrossRefGoogle Scholar
  37. Lidov HGW, Molliver ME (1982b): The structure of cerebral cortex in the rat following prenatal administration of 6-hydroxydopamine. Dev Brain Res 3:81–108CrossRefGoogle Scholar
  38. Lidov HGW, Molliver ME, Zecevic NR (1978): Characterization of the mono-aminergic innervation of immature rat neocortex: a histofiuorescence analysis. J Comp Neurol 181:663–680CrossRefGoogle Scholar
  39. Marin-Padilla M (1970): Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. I. The sequential development of the cortical layers. Brain Res 23:167–183CrossRefGoogle Scholar
  40. Marin-Padilla M (1978): Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126CrossRefGoogle Scholar
  41. Marin-Padilla M (1984): Neurons of layer I. A developmental analysis. In: Cerebral Cortex, Vol. 1, Peters A, Jones EG eds. New York: Plenum Press, pp.447–478Google Scholar
  42. Morrison JH, Foote SL, O’Connor D, Bloom FE (1982): Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-β-hydroxylase immunohistochemistry. Brain Res Bull 9:309–319CrossRefGoogle Scholar
  43. Mrzljak L, Uylings HBM, Kostović I, Van Eden C (1988): Prenatal development of neurons in the human prefrontal cortex: I. A qualitative golgi study. J Comp Neurol 271:355–386CrossRefGoogle Scholar
  44. Noack HJ, Lewis DA (1989): Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex. Brain Res 500:313–324CrossRefGoogle Scholar
  45. Nobin A, Björklund A (1973): Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40Google Scholar
  46. Olson L, Seiger A (1972): Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwickl Gesch 137:301–316CrossRefGoogle Scholar
  47. Olson L, Boreus LO, Seiger A (1973): Histochemical demonstration and mapping of 5-hydroxytryptamine-and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwickl Gesch 139:259–282CrossRefGoogle Scholar
  48. Papadopoulos GC, Parnavelas JG, Buijs RM (1989): Light and electron microscopic immunocytochemical analyses of the dopamine innervation of the rat visual cortex. J Neurocytol 18:303–310CrossRefGoogle Scholar
  49. Pearson J, Brandeis L, Goldstein M (1980): Appearance of tyrosine hydroxylase immunoreactivity in the human embryo. Dev Neuroscience 3:140–150CrossRefGoogle Scholar
  50. Phillipson OT, Kilpatrick IC, Jones MW (1986): Dopaminergic innervation of the primary visual cortex in the rat and some correlations with human cortex. Brain Res Bull 18:621–633CrossRefGoogle Scholar
  51. Raedler E, Raedler A, Feldhaus S (1980): Dynamical aspects in neocortical histogenesis in the rat. Anat Embryol 158:253–270CrossRefGoogle Scholar
  52. Rakic P (1974): Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427CrossRefGoogle Scholar
  53. Rakic P (1976): Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471CrossRefGoogle Scholar
  54. Rakic P (1982): Early developmental events: cell lineages, acquisition of neuronal positions, areal and laminar development. Neurosci Res Program Bull 20:439–451Google Scholar
  55. Rakic P (1988): Specification of the cerebral cortical areas. Science 241:170–177CrossRefGoogle Scholar
  56. Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986): Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235CrossRefGoogle Scholar
  57. Rakic P, Nowakowski RS (1981): The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196:99–128CrossRefGoogle Scholar
  58. Rice FL, Gomez C, Barstow C, Burnet A, Sands P (1985): A comparative analysis of the development of the primary somatosensory cortex: interspecies similarities during barrel and laminar development. J Comp Neurol 236:477–495CrossRefGoogle Scholar
  59. Roberts GW, Crow TJ (1987): The neuropathology of schizophrenia: a progress report. Brit Med Bull 43: 599–615Google Scholar
  60. Schatz CJ, Chun JJM, Luskin MB (1988): The role of the subplate in the development of the mammalian telencephalon. In: Cerebral Cortex, Vol. 7, Peters A, Jones EG, eds. New York: Plenum Press, pp. 35–58Google Scholar
  61. Schlumpf M, Shoemaker WJ, Bloom FE (1980): Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers. J Comp Neurol 192: 361–377CrossRefGoogle Scholar
  62. Schmidt RH, Björklund A, Lindvall O, Loren I (1982): Prefrontal cortex: dense dopaminergic input in the newborn rat. Dev Brain Res 5:222–228CrossRefGoogle Scholar
  63. Seiger A, Olson L (1973): Late prenatal ontogeny of central monoamine neurons in the rat. Fluorescence histochemical observations. Z Anat Entwickl 140:281–318CrossRefGoogle Scholar
  64. Specht LA, Pickel VM, Joh TH, Reis DJ (1981a): Lightmicroscopic immuno-cytochemical localization of tyrosine hydroxylase in prenatal brain. I. Early ontogeny. J Comp Neurol 199:233–254CrossRefGoogle Scholar
  65. Specht LA, Pickel VM, Joh TH, Reis DJ (1981b): Lightmicroscopic immuno-cytochemical localization of tyrosine hydroxylase in prenatal brain. II. Late ontogeny. J Comp Neurol 199:255–276CrossRefGoogle Scholar
  66. Van Eden CG, Hoorneman EMD, Buijs RM, Matthissen MAH, Geffard M, Uylings HBM (1987): Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuro-science 22:849–862Google Scholar
  67. Van Eden CG, Uylings HBM (1985): Cytoarchitectonic development of the prefrontal cortex in the rat. J Comp Neurol 242:253–267CrossRefGoogle Scholar
  68. Verney C, Alvarez C, Geffard M, Berger B (1991): Ultrastructural double labeling study of dopamine terminals and GABA-containing neurons in rat anterome-dial cerebral cortex. Europ J Neuroscience 2:960–972CrossRefGoogle Scholar
  69. Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985): Morphological evidence for a dopaminergic field in the hippocampal formation of the young and adult rat. Neuroscience 14:1039–1052CrossRefGoogle Scholar
  70. Verney C, Berger B, Adrien J, Vigny A, Gay M (1982): Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using antityrosine hydroxylase antibodies. Dev Brain Res 5:41–52CrossRefGoogle Scholar
  71. Verney C, Berger B, Baulac M, Helle KB, Alvarez C (1984): Dopamine-β-hydroxylase-like immunoreactivity in the fetal cerebral cortex of the rat: noradrenergic ascending pathways and terminal fields. Int J Devl Neuroscience 5:491–503CrossRefGoogle Scholar
  72. Verney C, Zecevic N, Nikoloc B, Alvarez C, Berger B (1991): Early evidence of catecholaminergic cell groups and pathways in 6-week-old human human embryos using tyrosine hydroxylase and dopamine beta hydroxlase immuno-cytochemistry. Neurosci Letters (in press).Google Scholar
  73. Zecevic N, Bourgeois JP, Rakic P (1989): Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Dev Brain Res 50: 11–32CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • B. Berger
  • C. Verney
  • P. S. Goldman-Rakic

There are no affiliations available

Personalised recommendations