Advertisement

The Stability of the Circadian Rhythm of the Green Finch (Carduelis chloris) Either in a Weak 10-Hz Electric Field or a Negatively Ionized Atmosphere

  • Thomas Lintzen
  • Günther Boese
  • Michael Müller
  • Heinrich Falk
  • Joseph Eichmeier
  • Gerhard Ruhenstroth-Bauer
Part of the Circadian Factors in Human Health and Performance book series (CFHH)

Abstract

Changes in free-running rhythms, under the influence of a weak non-ionizing electric field with square waves of 10 Hz at a field strength of | E | = 2.5 V/m, have been reported for humans (Wever, 1969) and for green finches (Carduelis chloris) (Wever 1973, 1985). The field led to a highly significant shortening (average 1.3 hr) of the spontaneous period, τ, in human subjects; in C. chloris, the corresponding value was 0.8 hr. In addition to this, the field reduced the number of states of internal desynchronization in humans and acted as a zeitgeber. These results led Wever (1973, 1985) to the general conclusion that the field effect was not restricted to humans. Further detailed studies of the effects of low frequency electromagnetic fields, with different waveforms and amplitudes, on T were therefore necessary to reproduce and augment these results.

Keywords

Circadian Rhythm Paired Difference Sudden Deafness Corona Discharge Ionizer Pulse Duty Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, W., Lang, S. (1976): Messung niederfrequenter elektrischer Felder mit einerGoogle Scholar
  2. halbleiterbestückten Elektrometersonde. Biomedizinische Technik 21:185–188Google Scholar
  3. Ehret, P.F., Duffy, C.H. (1983): High-strength 60-Hz electric fields are circadian zeitgebers in mice. Chronobiologia 10: 124Google Scholar
  4. Eichmeier, J., Baumer, H. (1982): Das natürliche elektromagnetische Impulsfrequenzspektrum der Atmosphäre. Arch Meteorol Geophys Bioklimatol Ser A 31: 249–261Google Scholar
  5. Hoffmann, G., Vogl, S., Baumer, H., Ruhenstroth-Bauer, G. (1988): Significant correlations between atmospherics and the in vivo incorporation of 3H-thymidine into the nuclear DNA of liver cells. Naturwissenschaften 75: 459–460CrossRefGoogle Scholar
  6. Lintzen, Th., Boese, G., Müller, M., Eichmeier, J., Ruhenstroth-Bauer, G. (1989): The stability of the circadian rhythm of green finches (Carduelis chloris) under the influence of a weak electrical field. J Biol Rhythms (4)3:371–376Google Scholar
  7. Pfützner, H. (1979): The standardization of experimental investigations of biological effects of low frequency electric and magnetic fields. Intl J Biometeorol 23: 271–278CrossRefGoogle Scholar
  8. Reiter, R. (1981): Elektrische Felder verschiedener Art im Inneren von Gebäuden unterschiedlicher Bauart und Benutzung mit Konsequenzen insbesondere für die Durchführung von Versuchen an biologischen Objekten. Freiburg, FRG: Forschungsstelle für ElektropathologieGoogle Scholar
  9. Ruhenstroth-Bauer, G., Baumer, H., Kugler, J., Spatz, R., Sönning, W., Filipiak, B. (1984): Epilepsy and weather: A significant correlation between the onset of epileptic seizures and specific atmospherics—a pilot study. Intl J Biometeorol 28: 333–340CrossRefGoogle Scholar
  10. Ruhenstroth-Bauer, G., Baumer, H., Burkel, E.M., Sönning, W., Filipiak, B. (1985): Myocardial infarction and the weather: A significant positive correlation between the onset of heart infarct and 28 kHz atmospherics—a pilot study. Clin Cardiol 8: 149–151CrossRefGoogle Scholar
  11. Ruhenstroth-Bauer, G., Mees, K., Sandhagen, R., Baumer, H., Filipiak, B. (1987): Demonstration of statistically significant correlation between 8 and 12 kHz atmospherics and sudden deafness: Z Naturforsch Teil C 42: 999–1000Google Scholar
  12. Weber, J. (1800): Die Spinnen sind Deuter des kommenden Wetters. Landshut, FRG: Verlag A. WeberGoogle Scholar
  13. Wever, R. (1969): Untersuchungen zur circadianen Periodik des Menschen mit besonderer Berücksichtingung des Einflusses schwacher elektrischer Wechselfelder. ErlingAndechs, FRG: Max-Planck-Institut für VerhaltensphysiologieGoogle Scholar
  14. Wever, R. (1973): Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Intl J Biometeorol 17: 227–232CrossRefGoogle Scholar
  15. Wever, R.A. (1985): The electromagnetic environment and the circadian rhythms of human subjects. In: Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields, Grandolfo, M., Michaelson, S.M., Rindi, A., eds. New York: Plenum PressGoogle Scholar
  16. Yost, M.G., Kellog III, E.W. (1987): Design and construction of cage environments for air ion and electric field research. Intl J Biometeorol 31: 109–125CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Thomas Lintzen
  • Günther Boese
  • Michael Müller
  • Heinrich Falk
  • Joseph Eichmeier
  • Gerhard Ruhenstroth-Bauer

There are no affiliations available

Personalised recommendations