Advertisement

Magnetic Fields, Opioid Systems, and Day-Night Rhythms of Behavior

  • Martin Kavaliers
  • Klaus-Peter Ossenkopp
Part of the Circadian Factors in Human Health and Performance book series (CFHH)

Abstract

Organisms have evolved in the presence of a variety of magnetic and electromagnetic fields. These naturally occurring fields include the earth’s geomagnetic field, electromagnetic fields (EMFs) resulting from solar radiation, and EMFs associated with tropospheric labilities such as lightning discharges and other atmospheric changes. In the last six decades there has been an explosive growth in man-made electromagnetic fields associated with the expanding electric power distribution systems and communication networks. In addition, many people are now exposed to various types of magnetic and electromagnetic fields in both the workplace and at home.

Keywords

Magnetic Field Opioid Receptor Pineal Gland Opioid Peptide Opioid System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W.R. (1981): Tissue interactions with non-ionizing electromagnetic fields. Physiol Rev 61:435–513Google Scholar
  2. Adey, W.R. (1987): Cell membranes, the electromagnetic environment and cancer promotion. Neurochem Res 13:671–677CrossRefGoogle Scholar
  3. Akil, H., Watson, S.J., Lewis, M.E., Khachaturian, H., Walker, M.J. (1984): Endogenous opioids: Biology and function. Annu Rev Neurosci 7:223–256CrossRefGoogle Scholar
  4. Amit, Z., Galina, Z.H. (1986): Stress-induced analgesia: Adaptive pain suppression. Physiol Rev 66:1091–1120Google Scholar
  5. Atweh, S.F., Kuhar, M.J. (1983): Distribution and significance of opioid receptors in the brain. Br Med Bull 39:47–52Google Scholar
  6. Bar-Or, A., Brown, G.M. (1989): Pineal involvement in the diurnal rhythm of nociception in the rat. Life Sci 44:1067–1075CrossRefGoogle Scholar
  7. Bawin, S.M., Adey, W.R., Sabbot, I.M. (1978): Ionic factors in the release of Ca+2 from chicken cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA 75:6314–6318CrossRefGoogle Scholar
  8. Besson, J.-M. (1987): Peripheral and spinal mechanisms of nociception. Physiol Rev 67:68–186Google Scholar
  9. Blackman, C.F., Beane, S.G., Rabinowicz, R.J., House, D.E., Joines, W.T. (1985): A role for the magnetic field in radiation-induced efflux of calcium ions from brain tissue in vivo. Bioelectromagnetics 6:327–379CrossRefGoogle Scholar
  10. Blackman, C.F., Kinney, L.S., House, D.E., Joines, W.T. (1989): Multiple power-density windows and their possible origin. Bioelectromagnetics 10:115–128CrossRefGoogle Scholar
  11. Bodnar, R.J., Romero, M.-T., Kramer, E. (1988): Organismic variables and pain inhibition: Roles of gender and aging. Brain Res Bull 21:947–953CrossRefGoogle Scholar
  12. Boulos, Z., Terman, M. (1980): Food availability and daily biological rhythms. Neurosci Biobehav Rev 4:119–131CrossRefGoogle Scholar
  13. Cain, D.P., Corcoran, M.E. (1985): Epileptiform effects of met-enkephalin, /3-endorphin and morphine: Kindling of generalized seizures and potentiation of epileptiform effects by handling. Brain Res 338:327–336CrossRefGoogle Scholar
  14. Carson, J.J.L., Prato, F.S., Drost, D.J., Diesbourg, L.D., Dixon, SJ. (1990): Time-varying magnetic fields increase cytosolic free Ca+2 in HL-60 cells. Am J Physiol (Cell Physiol 28) C687–C692Google Scholar
  15. Cremer-Bartels, G., Krause, K., Kiichle, H.J. (1983): Influence of low magnetic-field-strength variations on the retina and pineal gland of quails and humans. Graefe’s Arch Clin Exp Opthalmol 220:248–252CrossRefGoogle Scholar
  16. Cremer-Bartels, G., Krause, K., Mitoskas, G., Brodersen, D. (1984): Magnetic fields of the earth as additional zeitgeber for endogenous rhythms. Naturwissenschaften 71:567–574CrossRefGoogle Scholar
  17. Crockett, R.S., Bornschein, R.L., Smith, R.P (1977): Diurnal variation in response to thermal stimulation: mouse-hotplate test. Physiol Behav 18:193–196CrossRefGoogle Scholar
  18. Cuello, A.C. (1983): Central distribution of opioid peptides. Br Med Bull 39:11–16Google Scholar
  19. Dafny, N., Burks, T.F. (1976): Opiate and endocrine interaction: Morphine effects on hypothalamus and pineal body. Neuroendocrinology 22:72–86CrossRefGoogle Scholar
  20. Davis, H.P., Mizumori, S.J.Y., Allen, H., Rosenzweig, M.R., Bennett, E.L., Tenforde, T.S. (1984): Behavioral studies with mice exposed to DC and 60 Hz magnetic fields. Bioelectromagnetics 5:147–164CrossRefGoogle Scholar
  21. Decker, M.W., Introini-Collison, I.B., McGaugh, J.L. (1989): Effects of naloxone on Morris water maze learning in the rat: Enhanced acquisition with pretraining but not post-training administration. Psychobiology 17:270–275Google Scholar
  22. Delgado, J.M.R., Leal, J., Monteagudo, J.L., Garcia, M.G. (1982): Embyrologicalchanges induced by weak extremely low frequency electromagnetic fields. J Anat 134:53–551Google Scholar
  23. Easterly, C.E. (1981): Cancer link to magnetic field exposure: A hypothesis. Am J Epidemiol 114:169–174Google Scholar
  24. Ebihara, S., Marks, T., Hudson, D.J., Menaker, M. (1986): Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 23:491–493CrossRefGoogle Scholar
  25. Frederickson, R., Burgis, V., Edwards, J.D. (1977): Hyperalgesia induced by naloxone follows diurnal rhythm in responsivity to painful stimuli. Science 198:756–758CrossRefGoogle Scholar
  26. Frederickson, R.C.A., Geary, L.E. (1982): Endogenous opioid peptides: Review of physiological, pharmacological and clinical aspects. Prog Neurobiol 19:19–62CrossRefGoogle Scholar
  27. Frenk, H. (1983): Pro-and anticonvulsant actions of morphine and interactions of multiple opiate and non-opiate systems. Brain Res Rev 6:197–210CrossRefGoogle Scholar
  28. Golding, G.P, Newboult, L., Rees, J.M.H., Varlow, B.R. (1985): The effects of 50 Hz magnetic fields on opioid peptide mediated inhibition of guinea pig ileum. Neuropeptides 5:357–358CrossRefGoogle Scholar
  29. Goldstein, A. (1987): Binding selectivity profiles for ligands of multiple receptor types: Focus on opioid receptors. TIPS 8:456–458Google Scholar
  30. Goodman, R., Sharpe, P.T., Greenebaum, B., Marron, M.T. (1986): Pulsed magnetic fields alter the cell surface. FEBS Lett 199:275–278CrossRefGoogle Scholar
  31. Gould, J. (1984): Magnetic field sensitivity in animals. Annu Rev Physiol 4:585–598CrossRefGoogle Scholar
  32. Gulya, K. (1990): The opioid system in neurologic and psychiatric disorders and their experimental models. Pharmac Ther 46:395–428CrossRefGoogle Scholar
  33. Hoffmeister, F., Tettenborn, D. (1986): Calcium agonists and antagonists of dihydropyridine type: Antinociceptive effects, interference with opiates-receptor agonists and neuropharmacology of action in rodents. Psychopharmacology 90:299–307Google Scholar
  34. Hollt, V. (1986): Opioid peptide processing and receptor selectivity. Annu Rev Pharmacol Toxicol 26:59–77CrossRefGoogle Scholar
  35. Kafka, M.S., Wirz-Justice, A., Naber, D., Moore, R.Y., Benedito, M.A. (1983): Circadian rhythms in rat brain neurotransmitter receptors. Fed Proc 42:2796–2801Google Scholar
  36. Kavaliers, M. (1984): Opioid peptides, the pineal gland and rhythmic behavior in fishes. Trans Am Fish Soc 113:432–438CrossRefGoogle Scholar
  37. Kavaliers, M. (1988): Evolutionary and comparative aspects of nociception. Brain Res Bull 21:923–931CrossRefGoogle Scholar
  38. Kavaliers, M. (1989): 13-funaltrexamine disrupts the day-night rhythm of nociception in mice. Brain Res Bull 22:783–785CrossRefGoogle Scholar
  39. Kavaliers, M., Eckel, L., Ossenkopp, K.-P., Yu, N. (1991a): Enhanced learning of a sexually dimorphic spatial task in meadow voles following brief exposure to 60 Hz magnetic fields. Soc Neurosci Ahstr 21:63–96Google Scholar
  40. Kavaliers, M., Hirst, M. (1983): Daily rhythms of analgesia in mice: Effects of age and photoperiod. Brain Res 279:387–393CrossRefGoogle Scholar
  41. Kavaliers, M., Hirst, M. (1986): Food hoarding and ingestion in the deer mouse, Peromyscus maniculatus: Selective responses to mu and kappa opiate agonists. Pharmacol Biochem Behav 25:543–548CrossRefGoogle Scholar
  42. Kavaliers, M., Hirst, M., Teskey, G.C. (1983a): A functional role for an opiate system in snail thermal behavior. Science 220:99–101CrossRefGoogle Scholar
  43. Kavaliers, M., Hirst, M., Teskey, G.C. (1983b): Aging, opioid analgesia and the pineal gland. Life Sci 32:2279–2287CrossRefGoogle Scholar
  44. Kavaliers, M., Hirst, M., Teskey, G.C. (1985): Nocturnal feeding in the mouse-Opiate and pineal influences. Life Sci 36:973–980CrossRefGoogle Scholar
  45. Kavaliers, M., Innes, D. (1987): Sex differences in magnetic field inhibition of morphine-induced responses in wild deer mice, Peromyscus maniculatus triangularis. Physiol Behav 40:559–562CrossRefGoogle Scholar
  46. Kavaliers, M., Innes, D.G.L. (1987): Stress-induced opioid analgesia and activity in deer mice: Sex and population differences. Brain Res 425:49–56CrossRefGoogle Scholar
  47. Kavaliers, M., Innes, D.G.L. (1990): Developmental changes in opiate-induced analgesia: Sex and population differences. Brain Res 516:326–331CrossRefGoogle Scholar
  48. Kavaliers, M., Ossenkopp, K.-P. (1985a): Exposure to rotating magnetic fields alters morphine-induced behavioral responses in two strains of mice. Neuropharmacology 89:440–443Google Scholar
  49. Kavaliers, M., Ossenkopp, K.-P. (1985b): Tolerance to morphine induced analgesia in mice: Magnetic fields function as environmental specific cues and reduce tolerance development. Life Sci 37:1125–1135CrossRefGoogle Scholar
  50. Kavaliers, M., Ossenkopp, K.-P. (1986a): Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: Evidence for involvement of calcium ions. Brain Res 379:830–838CrossRefGoogle Scholar
  51. Kavaliers, M., Ossenkopp, K.-P. (1986b): Stress-induced opioid analgesia and activity in mice: Inhibitory influences of exposure to magnetic fields. Psychopharmacology 89:440–443CrossRefGoogle Scholar
  52. Kavaliers, M., Ossenkopp, K.-P. (1986c): Magnetic fields differentially inhibit mu, delta, kappa and sigma opiate-induced analgesia in mice Peptides 7:449–453CrossRefGoogle Scholar
  53. Kavaliers, M., Ossenkopp, K.-P. (1987a): Calcium channel involvement in magnetic field inhibition of morphine-induced analgesia. Naunyn-Schmiedebergs Arch Pharmacol 336:308–315Google Scholar
  54. Kavaliers, M., Ossenkopp, K.-P. (1987b): Day-night rhythms of opioid and non-opioid stress-induced analgesia: Differential inhibitory effects of exposure to magnetic fields. Pain 32:223–229CrossRefGoogle Scholar
  55. Kavaliers, M., Ossenkopp, K.-P. (1988): Magnetic fields inhibit opioid-mediated “analgesic” behaviors of the terrestrial snail, Cepaea nemoralis. J Comp Physiol A 162:551–558CrossRefGoogle Scholar
  56. Kavaliers, M., Ossenkopp, K.-P. (1991): Opioid systems and magnetic field effects in the land snail, Cepaea nemoralis. Biol Bull 180:301–309CrossRefGoogle Scholar
  57. Kavaliers, M., Ossenkopp, K.-P, Hirst, M. (1984): Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice. Physiol Behav 32:261–264CrossRefGoogle Scholar
  58. Kavaliers, M., Ossenkopp, K.-P., Lipa, S. (1990): Day-night rhythms in the inhibitory effects of 60 Hz magnetic fields on opiate-mediated “analgesic” behaviors of the land snail, Cepaea nemoralis. Brain Res 517:276–282CrossRefGoogle Scholar
  59. Kavaliers, M., Ossenkopp, K.-P, Tysdale, D.M. (1991b): Evidence for the involvement of protein kinase C in the modulation of morphine-induced “analgesia” and the inhibitory effects of exposure to 60 Hz magnetic fields in the land snail, Cepaea nemoralis. Brain Res (in press)Google Scholar
  60. Koob, G.E, Bloom, EE. (1983): Behavioral effects of opioid peptides. Br Med Bull 39:89–94Google Scholar
  61. Lakin, M., Miller, C.H., Scott, M.L., Winter, W.D. (1981): Involvement of the pineal gland and melatonin in murine analgesia. Life Sci 29:2543–2551CrossRefGoogle Scholar
  62. Leask, M.J.M. (1977): A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267:144–145CrossRefGoogle Scholar
  63. Leucht, T. (1990): Interactions of light and gravity reception with magnetic fields in Xenopus laevis. J Exp Biol 148:325–334Google Scholar
  64. Leung, M.K., Stefano, G.B. (1987): Comparative neurobiology of opioids in invertebrates with special attention to senescent alterations. Prog Neurobiol 28:131–159CrossRefGoogle Scholar
  65. Liburdy, R.P., Tenforde, R., Magin, R.L. (1986): Magnetic-field induced drug permeability in liposome vesicles. Radiat Res 108:102–111CrossRefGoogle Scholar
  66. Lissoni, P., Esposti, D., Esposti, G., Mauri, R., Resentini, M., Morabito, E, Fumagalli, P., Santagonstino, A., Delitala, G., Fraschini, F. (1986): A clinical study on the relationship between the pineal gland and the opioid system. J Neural Trans 65:63–73CrossRefGoogle Scholar
  67. Macdonald, R.L., Werz, M.A. (1986): Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol 377:237–249Google Scholar
  68. Mansour, H., Khachaturian, H., Lewis, M.E., Aki, H., Watson, S.J. (1987): Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464Google Scholar
  69. Martin, W.R. (1984): Pharmacology of Opioids. Pharmacol Rev 35:283–323.Google Scholar
  70. McGaugh, J.L. (1989): Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Annu Rev Neurosci 12:255–287CrossRefGoogle Scholar
  71. McGivern, P.F., Bernston, G.S. (1981): Mediation of diurnal fluctuations in pain sensitivity in the rat by food intake patterns: Reversal by naloxone. Science 210:210–211CrossRefGoogle Scholar
  72. McLeod, B.R., Liboff, A.R. (1987): Cyclotron resonance in cell membranes: the theory of the mechanism. In: Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems, Blank, M., Findl, E., eds. New York: Plenum PressGoogle Scholar
  73. Miller, D.B., Blackman, C.F., Ali, J.S. (1985): Behavioral responses of morphine-treated mice to ELF magnetic fields. Bioelectromag Soc Meet Abstr 1985:54Google Scholar
  74. Miller, R.J. (1987): Multiple calcium channels and neuronal function. Science 325:46–52CrossRefGoogle Scholar
  75. Millington, W.R., Blum, M., Knight, R., Mueller, G.P., Roberts, J.L., O’Donohue, T.L. (1986): A diurnal rhythm in proopiomelanocortin messenger ribonucleic acid that varies concomitantly with the content and secretion of endorphin in the intermediate lobe of the rat pituitary. Endocrinology 118:829–834CrossRefGoogle Scholar
  76. Mistlberger, R.E., Rusak, B. (1987): Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: Dependence on meal size and nutrient content. Physiol Behav 41:219–226CrossRefGoogle Scholar
  77. Morin, L.P., Smale, L., Michels, K., Johnson, R., Moore, R.Y. (1988): NPY, GFAD, 5HT and enkephalin in the intergeniculate leaflet and suprachiasmatic nuclei of the hamster. Soc Neurosci Abstr 14:51Google Scholar
  78. Morley, J.E., Kay, N., Solomon, G. (1988): Opioid peptides, stress, and immune function. In: Neuropeptides and Stress, Tache, Y., Morley, J.E., Brown, M.R., eds. New York: Springer-VerlagGoogle Scholar
  79. Morley, J.E., Levine, A.S., Yim, G.K., Lowy, M.T. (1983): Opioid modulation of appetite. Neurosci Biobehav Rev 7:281–305CrossRefGoogle Scholar
  80. Morris, R.G.M. (1981): Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260CrossRefGoogle Scholar
  81. Mrosovsky, N. (1987): Phase response curves for social entrainment.J Comp Physiol A 162:35–46CrossRefGoogle Scholar
  82. Naber, D., Wirz-Justice, A., Kafka, M.S. (1981): Circadian rhythm in rat brain opiate receptor. Neurosci Lett 21:45–50CrossRefGoogle Scholar
  83. North, R.A. (1986): Opioid receptor types and membrane ion channels. TINS 9:114–117Google Scholar
  84. Olcese, J., Reuss, S. (1986): Magnetic field effects on pineal gland synthesis: Comparative studies on albino and pigmented rodents. Brain Res 369:365–369CrossRefGoogle Scholar
  85. Olcese, J., Reuss, S., Vollrath, L. (1985): Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333:382–384CrossRefGoogle Scholar
  86. Ossenkopp, K.-P., Barbieto, R. (1978): Bird orientation and the geomagnetic field: A review. Neurosci Biobehav Rev 2:255–279CrossRefGoogle Scholar
  87. Ossenkopp, K.-P., Cain, D.P. (1988): Inhibitory effects of acute exposure to low-intensity 60-Hz magnetic fields on electrically kindled seizures in rats. Brain Res 422:255–260CrossRefGoogle Scholar
  88. Ossenkopp, K.-P., Cain, D.P. (1991): Inhibitory effects of powerline-frequency (60 Hz) magnetic fields on pentylenetetrazol induced seizures and mortality in rats.Behav Brain Res (in press)Google Scholar
  89. Ossenkopp, K.-P., Kavaliers, M. (1987): Morphine-induced analgesia and exposure to 60 Hz magnetic fields: Inhibition of nocturnal analgesia is a function of magnetic field intensity. Brain Res 418:356–360CrossRefGoogle Scholar
  90. Ossenkopp, K.-P., Kavaliers, M. (1988): Clinical and applied aspects of magnetic field exposure: A possible role for endogenous opioid systems. J Bioelect 7:189–208Google Scholar
  91. Ossenkopp, K.-P., Kavaliers, M., Hirst, M. (1983): Reduced morphine analgesia in mice following a geomagnetic disturbance. Neurosci Lett 40:321–325CrossRefGoogle Scholar
  92. Ossenkopp, K.-P, Kavaliers, M., Lipa, S.M. (1990): Increased mortality in land snails (Cepaea nemoralis) exposed to powerline (60-Hz) magnetic fields and effects of the light-dark cycle. Neurosci Lett 114:89–94CrossRefGoogle Scholar
  93. Ossenkopp, K.-P., Kavaliers, M., Prato, F.R., Teskey, G.C., Sestini, E., Hirst, M. (1985): Exposure to nuclear magnetic resonance imaging procedures attenuates morphine-induced analgesia in mice. Life Sci 37:1507–1514CrossRefGoogle Scholar
  94. Ossenkopp, K.-P., Koltek, W.T., Persinger, M. A. (1972): Prenatal exposure to an extremely low frequency low-intensity rotating magnetic field and increases in thyroid and testicle weight in rats. Develop Psychobiol 5:275–285CrossRefGoogle Scholar
  95. Ossenkopp, K.-P., Ossenkopp, M.D. (1983): Geophysical variables and behavior. XI. Open field behaviors in young rats exposed to an ELF rotating magnetic field. Psychol Rep 52:343–349CrossRefGoogle Scholar
  96. Papi, F., Luschi, P. (1990): Pigeon navigation: Naloxone injection and magnetic disturbance have a similar effect on initial orientation. Atti Acc Lincei Rend. fig. IX 1:473–477CrossRefGoogle Scholar
  97. Pasternak, G.W. (1986): Multiple mu opiate receptors: Biochemical and pharmacological evidence of multiplicity. Biochem Pharmacol 55:361–364CrossRefGoogle Scholar
  98. Paterson, S.J., Robson, L.E., Kosterlitz, H.W. (1983): Classification of opioid receptors. Br Med Bull 39:31–36Google Scholar
  99. Persinger, M.A., Ludwig, H.W., Ossenkopp, K.-P. (1973): Psycho-physiological effects of extremely low frequency electromagnetic fields: A review. Percept Motor Skills 36:1131–1159CrossRefGoogle Scholar
  100. Phillips, J.B. (1987): Specialized visual receptors respond to magnetic field alignment in the blowfly (Calliphora vicinia). Soc Neurosci Abstr 13:397Google Scholar
  101. Pickar, D., Cohen, M.R., Naber, D., Cohen, R.M. (1982): Clinical studies of the endogenous opioid system. Biol Psychiat 17:1243–1276Google Scholar
  102. Pickard, G.E. (1987): Circadian rhythm of nociception in the golden hamster. Brain Res 425:395–400CrossRefGoogle Scholar
  103. Prato, F.S., Ossenkopp, K.-P., Kavaliers, M. (1987): Nuclear magnetic resonance inhibition of morphine-induced analgesia in mice: Differential effects of the static, radio-frequency and time-varying magnetic field components. Mag Reson Imag 5:9–14CrossRefGoogle Scholar
  104. Przewlocki, R., Lason, W., Konecha, A.M., Gramsch, C., Herz, A., Reid, L.D. (1983): The opioid dynorphin, circadian rhythms and starvation. Science 210:1372–1373Google Scholar
  105. Redman, J.L., Armstrong, S., Ng, K.T. (1983): Free-running activity rhythms in the rat: Entrainment by melatonin. Science 219:1089–1092CrossRefGoogle Scholar
  106. Rusak, B., Mistlberger, R.E., Losier, B., Jones, C.H. (1988): Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. J Comp Physiol A 164:165–171CrossRefGoogle Scholar
  107. Savitz, D.A., Watchel, H., Barnes, F.A., John, E.M., Tvrdik, J.G. (1988): Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol 128:21–38Google Scholar
  108. Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288:607–608CrossRefGoogle Scholar
  109. Smith, I.A., Funder, J.W. (1988): Proopiomelanocostin processing in the pituitary, central nervous system and peripheral tissues. Endocr Rev 9:159–179CrossRefGoogle Scholar
  110. Stefano, G.B. (1989): Role of opioid neuropeptides in immunoregulation. Prog Neurobiol 33:149–153CrossRefGoogle Scholar
  111. Teskey, G.C., Kavaliers, M. (1988): Effects of opiate agonists and antagonists on aggressive encounters and subsequent opioid-induced analgesia, activity and feeding responses in male mice. Pharmacol Biochem Behav 31:43–52CrossRefGoogle Scholar
  112. Teskey, G.C., Prato, F.S., Ossenkopp, K.-P., Kavaliers, M. (1988): Exposure to time varying magnetic fields associated with magnetic resonance imaging reduces fentanyl-induced analgesia in mice. Bioelectromagnetics 9:167–176CrossRefGoogle Scholar
  113. Turek, F. (1987): Pharmacological probes of the mammalian circadian clock: Use of the phase response curve approach. TIPS 8:212–216Google Scholar
  114. Tysdale, D., Lipa, S.M., Ossenkopp, K.-P., Kavaliers, M. (1991): Inhibitory effects of 60 Hz magnetic fields on opiate-induced “analgesia” in the land snail, Cepaea nemoralis, under natural conditions. Physiol Behav 49:53–56CrossRefGoogle Scholar
  115. Ubeda, A., Leal, J., Trillo, M.A., Jimenez, M.A., Delgado, J.M.R. (1983): Pulse shape of magnetic fields influences chick embyrogenesis. J Anat 137:513–536Google Scholar
  116. Wertheimer, N., Leeper, E. (1989): Fetal loss associated with two seasonal sources of electromagnetic field exposure. Am J Epidemiol 129:220–224Google Scholar
  117. Werz, M.A., Macdonald, R.L. (1983): Opioid peptides selective for mu-and delta-opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci Lett 42:173–178CrossRefGoogle Scholar
  118. Wesche, D.L., Frederickson, R.C.A. (1979): Diurnal differences in opioid peptide levels correlated with nociceptive sensitivity. Life Sci 24:1861–1868CrossRefGoogle Scholar
  119. Wever, R.A. (1985): The electromagnetic environment and circadian rhythms of human subjects. In: Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields, Grandolfo, M., Michaelson, S.M., Rindi, A., eds. New York: Plenum PressGoogle Scholar
  120. Wilson, B.W. (1988): Chronic exposure to ELF fields may induce depression. Bioelectromagnetics 9:195–205CrossRefGoogle Scholar
  121. Wiltschko, W., Wiltschko, R., (1990): Magnetic orientation and celestial cues in migratory orientation. Experientia 46:342–352CrossRefGoogle Scholar
  122. Yu, N., Kavaliers, M. (1991): Pertussis toxin reduces the day-night rhythm of nociception and mu and kappa opiate-induced antinociception in the land snail, Cepaea nemoralis. Peptides (in press)Google Scholar
  123. Zagon, I.S., McLaughlin, P.J. (1987): Endogenous opioid systems regulate cell proliferation in the developing rat brain. Brain Res 412:68–72CrossRefGoogle Scholar
  124. Zagon, I.S., McLaughlin, P.J. (1989): Opioid antagonist modulation of murine neuroblastoma: A profile of cell proliferation and opioid peptides and receptors. Brain Res 480:16–28CrossRefGoogle Scholar
  125. Zagon, I.S., McLaughlin, P.J., Goodman, S.R., Rhodes, R.E. (1987): Opioid receptors and endogenous opioids are present in diverse human and animal cancers. J Natl Cancer Inst 79:1059–1065Google Scholar
  126. Zhang, L.J., Wang, X.J., Hans, J.S. (1990): Phorbol ester suppression of opioid analgesia in rats. Life Sci 47:1775–1782CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Martin Kavaliers
  • Klaus-Peter Ossenkopp

There are no affiliations available

Personalised recommendations