Factors in Postmeridial Hormone Changes Among Rats in Electric Field Exposure Studies

  • Sol M. Michaelson
  • Shin-Tsu Lu
Part of the Circadian Factors in Human Health and Performance book series (CFHH)


To maintain homeostasis, mammals possess precise coordinating control systems that react to changes in the internal and external environments. Among these controllers are the interacting neural and endocrine systems, which are among the prime physiological regulators of the body. Perturbations caused by environmental factors such as electric, magnetic, or electromagnetic fields can be manifested by functional changes in these regulatory systems of the body. Acting alone or in concert, the various components of the neuroendocrine system play a central role in the integrative activities that are required for homeostasis.


Pineal Gland Corticosterone Level Magnetic Field Effect Magnetic Field Exposure Corticosterone Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader, R.F., Friedman, S.B. (1968): Plasma corticosterone response to environmental stimulaiton: Effects of duration of stimulation and the 24-hour adrenocortical rhythm. Neuroendocrinology 3: 378–386CrossRefGoogle Scholar
  2. Brown, F. (1959): Living clocks. Science 130: 1535CrossRefGoogle Scholar
  3. Brown, F. (1960): Response to pervasive geophysical factors and the biological clock problem. Cold Spring Harbor Sym Quant Biol 25: 57CrossRefGoogle Scholar
  4. Brown, F. (1962): Extrinsic rhythmicality: A reference frame for biological rhythms under so-called constant conditions. Ann NYAcad Sci 98: 775CrossRefGoogle Scholar
  5. Brown, F.A., Hastings, J.W., Palmer, J.D. (1970): The Biological Clock: Two Views. New York: Academic PressGoogle Scholar
  6. Dowse, H.B., Palmer, J.D. (1969): Entrainment of circadian activity rhythms in mice by electrostatic fields. Nature 222: 564–566CrossRefGoogle Scholar
  7. Duffy, P.H., Ehret, C.F. (1982): Effects of intermittent 60-Hz electric field exposure circadian phase shifts, splitting, torpor arousal responses in mice. 4th Annual Scientific Session of the Bioelectromagnetics Society. AbstractsGoogle Scholar
  8. Ehret, C.F. (1985): The actions of high strength 60-Hz electric fields on circadian rhythms in small rodents. In: Biological Effects from Electric Fields, Air Ions, and Ion Currents Associated with High Voltage Transmission Lines. DOE/EPRI Contractor’s Review, Alexandria VA, NovemberGoogle Scholar
  9. Ehret, C.F., Rosenberg, R.S., Sacher, G.A., Duffy, P.H., Groh, K.R., Russell, J.J. (1980): Biomedical effects associated with energy transmission systems: Effects of 60 Hz electric fields on circadian and ultradian physiological and behavioral functions in small rodents. Report for the period Jan. 1-Dec. 31, 1980. I USDOE. Argonne National Laboratory, Argonne, ILGoogle Scholar
  10. Free, M.J., Kaune, W.T., Phillips, R.D., Cheng, H.C. (1981): Endocrinological effects of strong 60-Hz electric fields on rats. Bioelectromagnetics 2 (2): 105–122CrossRefGoogle Scholar
  11. Groh, K.R., Ehret, C.F., Ready, M.A. (1988): The actions of high-strength 60 Hz electric fields on circadian rhythms in small rodents. In: Biological Effects from Electric Fields, Air Ions, and Ion Currents Associated with High Voltage Transmission Lines. DOE/EPRI Contractor’s Review, Phoenix AZ, NovemberGoogle Scholar
  12. Hackman, R.M., Graves, H.B. (1981): Corticosterone levels in mice exposed to high intensity electric fields. Behav Neur Biol 32: 201–213CrossRefGoogle Scholar
  13. Kavaliers, M., Ossenkopp, K.-P. (1986): Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: Evidence for involvement of calcium ions. Brain Res 379: 30–38CrossRefGoogle Scholar
  14. Lu, S.T., Pettit, S., Lu, S.J., Michaelson, S.M. (1986): Effects of microwaves on the adrenal cortex. Rad Res 107: 234–239CrossRefGoogle Scholar
  15. Lu, S.-T., Lebda, N.A., Lu, S.J., Pettit, S., Michaelson SM (1987): Effects of microwaves on three different strains of rats. Rad Res 110: 173–191CrossRefGoogle Scholar
  16. Michaelson, S.M., Houk, W.M., Lebda, N.A., Lu, S.-T., Magin, R. (1975): Biochemical and neuroendocrine aspects of exposure to microwaves. Ann NYAcad Sci 247: 21–45CrossRefGoogle Scholar
  17. Michaelson, S.M., Lu, S.T. (1988): Electric field exposure and physiologic stress. In: Biological Effects from Electric Fields, Air Ions, and Ion Currents Associated with High Voltage Transmission Lines. DOE/EPRI Contractor’s Review, Phoenix AZ, NovemberGoogle Scholar
  18. Olcese, J., Reuss, S. (1986): Magnetic field effects on pineal gland melatonin synthesis: Comparative studies on albino and pigmented rodents. Brain Res 369: 365–368CrossRefGoogle Scholar
  19. Olcese, J., Reuss, S., Vollrath, L. (1985): Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333: 382–384CrossRefGoogle Scholar
  20. Quinlan, W.J., Michaelson, S.M., Lebda, N.A., Pettit, S., Catallo, M. (1987): Central neural regulation in rats exposed to 60-Hz electric fields. In: Interaction of Biological Systems with Static and ELF Electric and Magnetic Fields, Anderson, L.E. et al. eds. CONF-841041. National Technical Information Service, Springfield VAGoogle Scholar
  21. Quinlan, W.J., Petrodas, D., Lebda, N., Pettit, S., Michaelson, S.M. (1985): Neuroendocrine parameters in the rat exposed to 60-Hz electric field. Bioelectromagnetics 6: 381–389CrossRefGoogle Scholar
  22. Rao, M., Meager, T. (1987): Influence of the pineal gland on pituitary function in humans. Psychoneuroimmunology 12: 141–147Google Scholar
  23. Reiter, R.J. (1983): The pineal gland: An intermediary between the environment and the endocrine system. Psychoneuroendocrinology 8 (1): 31–40CrossRefGoogle Scholar
  24. Reuss, S., Olcese, J. (1986): Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci Lett 64: 97–101CrossRefGoogle Scholar
  25. Reuss, S., Olcese, J., Vollrath, L., Sikalej, M., Meves, M. (1985): Lack of effect of NMR strength magnetic fields on rat pineal melatonin synthesis. IRCS Med Sci 13: 471Google Scholar
  26. Reuss, S., Semm, P., Vollrath, L. (1983): Different types of magnetically sensitive cells in the rat pineal gland. Neurosci Lett 40: 23–26CrossRefGoogle Scholar
  27. Seegal, E., Wolpaw, J.R., Dowman, R. (1989): Chronic exposure of primates to 60-Hz elec- tric and magnetic fields: II. Neurochemical effects. Bioelectromagnetics 10: 289–301CrossRefGoogle Scholar
  28. Seggie, J.A., Brown, G.M. (1975): Stress response patterns of plasma corticosterone, prolactin and growth hormone in the rat following handing or exposure to novel environment. Can J Physiol Pharmacol 53: 629–637CrossRefGoogle Scholar
  29. Seggie, J.A., Brown, G.M. (1982): Profiles of hormone stress response: Recruitment of pathway specificity. In: Brain Peptides and Hormones, Coller, R., ed. New York: Raven PressGoogle Scholar
  30. Semm, P. (1983): Neurobiological investigations of the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol 76A: 683–689CrossRefGoogle Scholar
  31. Semm, P., Demaine, C. (1986): Neurophysiological properties of magnetic cells in the visual system of the pigeon. J Comp Physiol 159: 619–625CrossRefGoogle Scholar
  32. Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608CrossRefGoogle Scholar
  33. Sulzman, F.M., Murrish, D.E. (1986): Effects of electromagnetic fields on primates circadian rhythms. New York State Power Lines Project.Google Scholar
  34. Vasquez, B.J., Anderson, L.E., Lowry, C.I., Adey, W.R. (1988): Diurnal patterns in brain biogenic amines of rats exposed to 60-Hz electric fields. Bioelectromagnetics 9: 229–236CrossRefGoogle Scholar
  35. Welker, H.A., Semm, P., Willig, R.P., Commentz, J.C., Wiltschko, W., Vollrath, L. (1983): Effects of an artificial magnetic field on serotonin N-acetyl transferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–432CrossRefGoogle Scholar
  36. Wever, R. (1967): Über die Beeinflussungf der cirdadianen Periodik des Menschen durch schwache elektromagnetische Felder. Z verg Physiol 56: 111–128Google Scholar
  37. Wever, R. (1968): Einfluss schwacher elecktro-magnetischer Felder auf die circadiane Periodik des Menschen. Naturwissenschaften 55: 29–32CrossRefGoogle Scholar
  38. Wever, R.A. (1985): The electromagnetic environment and the circadian rhythms of human subjects. In: Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields Grandolfo, M., Michaelson, S.M., Rindi, A., eds. New York-London: Plenum PressGoogle Scholar
  39. Wilson, B.W., Anderson, L.E., Hilton, D.I., Phillips, R.D. (1981): Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2: 271–380CrossRefGoogle Scholar
  40. Wilson, B.W., Anderson, L.E., Hilton, D.I., Phillips, R.D. (1983): Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. Errata. Bioelectromagnetics 4: 293CrossRefGoogle Scholar
  41. Wilson, B.W., Chess, E.K., Anderson, L.E. (1986): 60-Hz field effects on pineal melatonin rhythms: Time course of onset and recovery. Bioelectromagnetics 7: 239–242Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Sol M. Michaelson
  • Shin-Tsu Lu

There are no affiliations available

Personalised recommendations