Advertisement

Magnetoreception in Rodents: Involvement of the Eyes and the Pineal Organ may be Evidence for a Chronobiological Substrate

  • James M. Olcese
Part of the Circadian Factors in Human Health and Performance book series (CFHH)

Abstract

For centuries the idea that animals respond to ambient magnetic fields (MF) has been restricted largely to speculations based on rare observations in the field. However, in the past few decades a slow but gradual increase in scientific interest has begun to delineate some aspects of magnetoreception in vertebrates (Adey, 1981; Gould, 1983; Kirschvink, 1989). The ultimate goal of these studies has been, and continues to be, the identification of physiological and anatomical components of a magnetoreceptor.

Keywords

Ground Squirrel Magnetic Field Effect Pineal Organ Ambient Magnetic Field Melatonin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W.R. (1981): Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–513Google Scholar
  2. Beason, R.C., Nichols, J.E. (1984): Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309: 151–153CrossRefGoogle Scholar
  3. Blackman, C.F. (1988): Stimulation of brain tissue in vitro by extremely low frequency, low intensity, sinusoidal electromagnetic fields. In: Electromagnetic Fields and Neurobehavioral Function, O’Connor, M.E., Lovely, R.H., eds. New York: Alan R. LissGoogle Scholar
  4. Brainard, G.C., Richardson, B.A., King, T.S., Matthews, S.A., Reiter, R.J. (1983): The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: A dose-response relationship. Endocrinology 113: 293–296CrossRefGoogle Scholar
  5. Brown, F.A., Scow, K.M. (1978): Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9: 137–145CrossRefGoogle Scholar
  6. Creel, D. (1980): Inappropriate use of albino animals as models in research. Pharmacol Biochem Behav 12: 969–977CrossRefGoogle Scholar
  7. Deguchi, T., Axelrod, J. (1972): Sensitive assay for serotonin N-acetyltransferase activity in rat pineal. Analyt Biochem 50: 174–179CrossRefGoogle Scholar
  8. Dräger, U.C. (1985): Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci (USA) 82: 6716–6720CrossRefGoogle Scholar
  9. Dräger, U.C. (1986): Albinism and visual pathways. N Engl J Med 314: 1636–1638CrossRefGoogle Scholar
  10. Frucht, Y., Vidauri, J., Melamed, E. (1982): Light activation of dopaminergic neurons in rat retina is mediated through photoreceptors. Brain Res 249: 153–156CrossRefGoogle Scholar
  11. Gould, J.L. (1983): Magnetic field sensitivity in animals Annu Rev Physiol 46: 585–598CrossRefGoogle Scholar
  12. Hoogland, P.V., van der Krans, A., Koole, F.D., Groenewegen, H.J. (1985): A direct projection from the nucleus oculomotorius to the retina in rats. Neurosci Lett 56: 323–328CrossRefGoogle Scholar
  13. Kamp, C.W. (1985): The dopamine system of the retina. In: Retinal Transmitters and Modulators: Models for the Brain, vol. 2, Morgan, WW, ed. Boca Raton: CRC PressGoogle Scholar
  14. Kirschvink, J.L. (1989): Magnetite biomineralization and geomagnetic sensitivity in higher animals: An update and recommendations for future study. Bioelectromagnetics 10: 239–259CrossRefGoogle Scholar
  15. Lanum, J. (1978): The damaging effects of light on the retina. Emperical findings, theoretical and practical implications. Sury Opthalmol 22: 221–249CrossRefGoogle Scholar
  16. Larsen, J.N.B., Moller, M. (1987): The presence of retinopetal fibres in the optic nerve of the Mohgolian gerbil (Meriones unguiculatus): A horseradish peroxidase in vitro study. Exp Eye Res 45: 763–768CrossRefGoogle Scholar
  17. Leask, M.J.M. (1977): A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267: 144–145CrossRefGoogle Scholar
  18. Lerchl, A., Nonaka, K.O., Stokkan, K.-A., Reiter, R.J. (1990): Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields. Biochem Biophys Res Commun 169: 102–108CrossRefGoogle Scholar
  19. Leucht, T. (1990): Interactions of light and gravity reception with magnetic fields in Xenopus laevis. J Exp Biol 148: 325–334Google Scholar
  20. Long, K.O., Fischer, S.K. (1983): The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. J Comp Neurol 221: 329–340CrossRefGoogle Scholar
  21. Lynch, H.J., Deng, M.H., Wurtman, R.J. (1984): Light intensities required to suppress nocturnal melatonin secretion in albino and pigmented rats. Life Sci 35: 841–847CrossRefGoogle Scholar
  22. Mather, J.G. (1985): Magnetoreception and the search for magnetic material in rodents. In: Magnetite Biomineralization and Magnetoreception in Organisms. Kirschvink, J.L., Jones, D.S., MacFadden, B.J., eds. New York: Plenum PressGoogle Scholar
  23. Mather, J.G., Baker, R.R., (1981): Magnetic sense of direction in woodmice for route-based navigation. Nature 291: 152–155CrossRefGoogle Scholar
  24. Matthews, H.R., Murphy, R.L.W., Fain, G.L., Lamb, T.D. (1988): Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334: 67–69CrossRefGoogle Scholar
  25. Mullen, R.J., LaVail, M.M. (1976): Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras. Science 192: 799–801CrossRefGoogle Scholar
  26. Muller, T.H., Unsicker, K. (1981): High-performance liquid chromatography with electrochemical detection as a highly efficient tool for studying catecholaminergic systems. I. Quantification of noradrenaline, adrenaline and dopamine in cultured adrenal medullary cells. J Neurosci Meth 4: 39–52CrossRefGoogle Scholar
  27. Olcese, J.M. (1990): The neurobiology of magnetic field detection in rodents. Prog Neurobiol 35: 325–330CrossRefGoogle Scholar
  28. Olcese, J., Hurlbut, E. (1989): Comparative studies on the retinal dopamine response to altered magnetic fields in rodents. Brain Res 498: 145–148CrossRefGoogle Scholar
  29. Olcese, J., Reuss, S. (1986): Magnetic field effects on pineal gland melatonin synthesis: Comparative studies on albino and pigmented rodents. Brain Res 369: 365–369CrossRefGoogle Scholar
  30. Olcese, J., Ruess, S., Stehle, S., Steinlechner, S., Vollrath, L. (1987): The mammalian pineal and retinae as geomagnetic field detectors. In: Fundamentals and Clinics in Pineal Research, Trentini, G.P., DeGaetani, C., Pevet, P., eds. New York: Raven PressGoogle Scholar
  31. Olcese, J., Reuss, S., Stehle, S., Steinlechner, S., Vollrath, L. (1988): Responses of the mammalian retina to experimental alteration of the ambient magnetic field. Brain Res 448: 325–330CrossRefGoogle Scholar
  32. Olcese, J., Reuss, S., Vollrath, L. (1985): Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333: 382–384CrossRefGoogle Scholar
  33. Osborne, N.N., Patel, S. (1985): The presence of dopamine-ß-hydroxylase-like enzyme in the vertebrate retina. Neurochem Int 7: 51–56CrossRefGoogle Scholar
  34. Raybourn, M.S. (1983): The effects of direct-current magnetic fields on turtle retinas in vitro. Science 220: 715–717CrossRefGoogle Scholar
  35. Reppert, S.M., Weaver, D.R., Rivkees, S.C., Stopa, E.G. (1988): Putative melatonin receptors in a human biological clock. Science 242: 78–81CrossRefGoogle Scholar
  36. Reuss, S., Olcese, J. (1986): Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci Lett 64: 97–101CrossRefGoogle Scholar
  37. Reuss, S., Semm, P., Vollrath, L. (1983): Different types of magnetically sensitive cells in the rat pineal gland. Neurosci Lett 40: 23–26CrossRefGoogle Scholar
  38. Rudolph, K., Wirz-Justice, A., Kräuchi, K., Feer, H. (1988): Static magnetic fields decrease nocturnal pineal cAMP in the rat. Brain Res 446: 159–160CrossRefGoogle Scholar
  39. Schulten, K., Windemuth, A. (1986): Model for a physiological magnetic compass. In: Biophysical Effects of Steady Magnetic Fields, Maret, G., Kiepenheuer, J., Boccara, N., eds. Berlin: Springer-VerlagGoogle Scholar
  40. Semm, P., Nohr, D., Demaine, C., Wiltschko, W. (1984): Neural basis of the magnetic compass: Interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol 155A: 283–288CrossRefGoogle Scholar
  41. Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608CrossRefGoogle Scholar
  42. Skiles, D.D. (1985): The geomagnetic field its nature, history, and biological relevance. In: Magnetite Biomineralization and Magnetoreception in Organisms, Kirschvink, J.L., Jones, D.S., MacFadden, B.J., eds. New York: Plenum PressGoogle Scholar
  43. Stehle, J., Reuss, S., Schröder, H., Henschel, M., Vollrath, L. (1988): Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil role of pigmentation and sex. Physiol Behav 44: 91–94CrossRefGoogle Scholar
  44. Stutz, A.M. (1971): Effects of weak magnetic fields on gerbil spontaneous activity. Ann NY Acad Sci 188: 312–323CrossRefGoogle Scholar
  45. Townes-Anderson, E., Dacheux, R.F., Raviola, E. (1988): Rod photoreceptors dissociated from the adult rabbit retina. J Neurosci 8: 320–331Google Scholar
  46. Vanecek, J. (1988): Melatonin binding sites. J Neurochem 51: 1436–1440CrossRefGoogle Scholar
  47. Vollrath, L. (1981): The Pineal Organ (Handbuch der Mikroskopischen Anatomie des Menschen, vol VI/7). Berlin: Springer-VerlagCrossRefGoogle Scholar
  48. Weaver, D.R., Namboodiri, A., Reppert, S.M. (1988): Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett 228: 123–127CrossRefGoogle Scholar
  49. Welker, H.A., Semm, P., Willig, R.P., Commentz, J.C., Wiltschko, W., Vollrath, L. (1983): Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–432CrossRefGoogle Scholar
  50. Wiechmann, A.F. (1986): Melatonin: Parallels in pineal gland and retina. Exp Eye Res 42: 507–527CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • James M. Olcese

There are no affiliations available

Personalised recommendations