Pineal Function in Mammals and Birds is Altered by Earth-Strength Magnetic Fields

  • Peter Semm
Part of the Circadian Factors in Human Health and Performance book series (CFHH)


The discovery of the magnetic sensitivity of the mammalian pineal gland (electrophysiology: Semm et al., 1980; biochemistry: Welker et al., 1983) initiated for the first time the possibility of measuring influences of the magnetic environment in the central nervous system. We found this remarkable property of the pineal gland during a research program dealing with electrophysiological characteristics of mammalian pinealocytes. However, we were mainly interested in the physiological basis of the magnetic compass in migrating and homing animals. After it became clear that the pineal is not directly involved in magnetic compass orientation (Maffei et al., 1983; Semm et al., 1987), we used the magnetic sensitivity of the gland as a tool for finding other nerve cells that might be involved in magnetic orientation (Beason and Semm, 1987; Semm et al., 1984; Semm and Demaine, 1986).


Pineal Gland Magnetic Storm Pineal Organ Magnetic Compass Melatonin Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardasano, J.L., Meyer, A J., Picazo, L. (1985): Ultrastructure of the pineal cells of the homing pigeon. J Hirnforschumg 26: 471–475Google Scholar
  2. Beason, R.C., Semm, P. (1987): Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neurosci Lett 80: 229CrossRefGoogle Scholar
  3. Bliss, V.L., Heppner, F.H. (1976): Circadian activity rhythm influenced by near zero magnetic field. Nature 261: 411–412CrossRefGoogle Scholar
  4. Brown, J.A., Jr., Scow, K.M. (1978): Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9: 137–145CrossRefGoogle Scholar
  5. Chics-DeMet, A., Chics-DeMet, E., Wu, H., Coopersmith, R., Leon, M. (1988): Earth-strength magnetic fields selectively alter activity of the pineal gland and hippocampus. Neurosci Abstr 156: 17Google Scholar
  6. Cremer-Bartels, G., Krause, K., Kiichle HJ (1983): Influence of low magnetic-field-strength variations on the retina and pineal gland of quails and humans. Graefs Arch Clin Exp Ophthalmol 220: 248–252CrossRefGoogle Scholar
  7. Cremer-Bartels, G., Krause, K., Mitoskas, G., Brodersen, G. (1984): Magnetic field of the earth as additional zeitgeber for endogeneous rhythms? Naturwissenschaften 71: 567–574CrossRefGoogle Scholar
  8. Deguchi, T., Axelrod, J. (1972): Sensitive assay for serotonin-N-acetyl-transferase activity in the rat pineal. Analyt Biochem 50: 174–179CrossRefGoogle Scholar
  9. Demaine, C., Semm, P. (1985): The avian pineal gland as an independent magnetic sensor. Neurosci Lett 62: 119–122CrossRefGoogle Scholar
  10. Demaine, C., Semm, P. (1986): Magnetic fields abolish nycthermal rhythmicity of responses of Purkinje cells to the pineal hormone melatonin in the pigeons cerebellum. Neurosci Lett 72: 158–162CrossRefGoogle Scholar
  11. Kalmijn, A.J. (1971): The electric sense of sharks and rays. J Exp Biol 55: 371–383Google Scholar
  12. Keshavan, M.S., Gangadhar, B.N., Gautam, R.U., Ajiit, V.B., Kapur, R.L. (1981): Convulsive threshold in humans and rats and magnetic field changes: Observation during total solar eclipse. Neurosci Lett 22: 205–208CrossRefGoogle Scholar
  13. Leucht, T. (1987): Magnetic effects on tail-fin melanophores of Xenopus laevis tadpoles in vitro. Naturwissenschaften 74: 441–443CrossRefGoogle Scholar
  14. Lindauer, M., Martin, H. (1968): Die Schwereorientierung der Bienen unter dem Einfluss des Erdmagnetfeldes. Z Vergl Physiol 60: 219–243CrossRefGoogle Scholar
  15. Maffei, L., Meschini, E., Papi, F. (1983): Pineal body and magnetic sensitivity: Homing in pinealectomized under overcast skies. Z Tierpsychol 62: 151–156CrossRefGoogle Scholar
  16. Mai, K., Semm, P.: C 2-deoxyglucose utilization during magnetic stimulation in the pigeon. J Hirnforschung (in press)Google Scholar
  17. Ossenkopp, K.-P, Kavaliers, M., Hirst, M. (1983): Effect of geomagnetic disturbance on morphine analgesia in mice reduced nocturnal analgesia following a magnetic storm. Neurosci Lett 40: 321–325CrossRefGoogle Scholar
  18. Persinger, M.A. (1987): Geopsychology and geopsychopathology: Mental processes and disorders associated with geochemical and geophysical factors. Experientia 43: 92–104CrossRefGoogle Scholar
  19. Phillips, J.B. (1987): Specialized visual receptores respond to magnetic field alignment in the blowfly (Calliphora vicina). Soc Neurosci Abst 13: 397Google Scholar
  20. Reuss, S., Semm, P. (1987): Earth-strength magnetic fields inhibit melatonin synthesis in the pigeon pineal gland. Naturwissenschaften 74: 38–39CrossRefGoogle Scholar
  21. Reuss, S., Semm, P., Vollrath, L. (1983): Different types of magnetically sensitive cells in the rat pineal gland. Neurosci Lett 40: 23–26CrossRefGoogle Scholar
  22. Schulten, K., Windemuth, A. (1986): Model for a physiological magnetic compass. In: Biophysical Effects of Steady Magnetic Fields, Maret, G., Kiepenheuen, J., Boccara, N., eds. Berlin: Springer-VerlagGoogle Scholar
  23. Semm, P., Brettschneider, Dölla, K., Wiltschko, W. (1987): Interaction between magnetic stimuli and annual activity in birds. Behavioral and Physiological investigations. In: Comparative Physiology of Environmental Adaptations, vol. 3, Pevet, P., ed.Google Scholar
  24. Semm, P., Demaine, C. (1986): Neurophysiological properties of magnetic cells in the visual system of the pigeon. J Comp Physiol 159: 619–625CrossRefGoogle Scholar
  25. Semm, P., Nohr, D., Demaine, C., Wiltschko, W. (1984): Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol 155A: 283–288CrossRefGoogle Scholar
  26. Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608CrossRefGoogle Scholar
  27. Semm, P., Schneider, T., Vollrath, L., Wiltschko, W. (1982): Magnetic sensitive pineal cells in pigeons. In: Avian Navigation, Papi, F., Wallraff, H.G., eds. Berlin-Heidelberg-New York: Springer-VerlagGoogle Scholar
  28. Semm, P., Vollrath, L. (1984): Electrical responses of homing pigeon and guinea pig Purkinje cells to pineal indoleamines applied by microelectrophoresis. J Comp Physiol 154: 675–681CrossRefGoogle Scholar
  29. Walcott, C. (1977): Magnetic field and the orientation of homing pigeons under the sun. J Exp Biol 70: 105–123Google Scholar
  30. Welker, H.A., Semm, P., Willig, R.P., Commentz, J.C., Wiltschko, W., Vollrath, L. (1983): Effects of an artificial magnetic field on the serotonin N-acetyl transferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–432CrossRefGoogle Scholar
  31. Wilson, B.W., Anderson, L.E., Hilton, D.I., Phillips, R.D. (1981): Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2: 371–380CrossRefGoogle Scholar
  32. Wiltschko, W. (1978): Further analysis of the magnetic compass of migratory birds. In: Animal Migration, Navigation, and Homing, Schmidt-Koenig, K., Keeton, W.T., eds. Berlin: Springer-VerlagGoogle Scholar
  33. Wiltschko, W. (1983): Compasses used by birds. J Comp Biochem Physiol 76: 709–717CrossRefGoogle Scholar
  34. Wiltschko, W., Wiltschko, R. (1972): Magnetic compass of European robins. Science 176: 62–64CrossRefGoogle Scholar
  35. Wiltschko, W., Wiltschko, R. (1988): Magnetic orientation in birds. CurrOrnithol 5: 61–62Google Scholar
  36. Zeise, M., Semm, P. (1985): Melatonin lowers excitability of guinea pig hippocampal neurones in vitro J Comp Physiol 157: 23–29CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Peter Semm

There are no affiliations available

Personalised recommendations