Effects of Electromagnetic Field Exposure on Neuroendocrine Function

  • Bary W. Wilson
  • Richard G. Stevens
  • Larry E. Anderson
Part of the Circadian Factors in Human Health and Performance book series (CFHH)


There is now increasing interest in the possibility that exposure to static or extremely low frequency (ELF: 0–300 Hz; including 50 and 60-Hz powerline frequencies) electric and magnetic fields are associated with increased risk for certain cancers (Savitz and Calle, 1987), emotional depression (Perry and Pearl, 1988; Wilson, 1988), and changes in reproductive function and development (Wertheimer and Leeper, 1986). It now appears possible that EMF-induced changes in pineal gland function may account wholly, or in part, for these effects. We present here a discussion of this hypothesis.


Pineal Gland Field Exposure Melatonin Level Male Breast Cancer Magnetic Field Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W.R., Bors, E., Porter, R.W. (1968): EEG sleep patterns after high cervical lesions in man. Arch Neurol 19: 377–383CrossRefGoogle Scholar
  2. Anderson, L.E. (1985): Interactions of ELF electric and magnetic fields with the neural and neuroendocrine systems In: Biological and Human Health Effects of Extremely Low Frequency Electromagnetic Fields. Arlington, VA: American Institute of Biological Sciences Graves, H.B., ed.Google Scholar
  3. Anderson, L.E. (1990): Interaction of electric and magnetic fields with neural and neuro-endocrine systems In: Extremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., Anderson, L.E., eds. Columbus, OH: Battelle Press.Google Scholar
  4. Angeli, A., Gatti, G., Sartori, M.L., DelPonte, D., Garagnola, R. (1988): Effect of exogenous melatonin on human natural killer (NK) cell activity: An approach to the immunomodulatory role of the pineal gland. In: The Pineal Gland and Cancer, Gupta, D., Attanasio, A., Reiter, R., eds. London: Brain Research Promotion.Google Scholar
  5. Axelrod, J., Weissbach, H. (1960): Enzymatic 0-methylation of N-acetylserotonin to melatonin. Science 131: 1312.CrossRefGoogle Scholar
  6. Barlow, H.B., Kohn, H.I., Walsh, E.G. (1947): Visual sensations aroused by magnetic fields. Am J Physiol 148: 372.Google Scholar
  7. Bartsch, C., Bartsch, H., Jain, A.K., Laumas, K.R., Wetterberg, L. (1981): Urinary melatonin levels in human breast cancer patients. J Neural Transm 52: 281.CrossRefGoogle Scholar
  8. Bartsch, C., Bartsch, H., Fluchter, S.H., Attanasio, A., Das Gupta, T. (1988): Evidence for a modulation of melatonin secretion in men with benign and malignant tumors of the prostate: Relationship with pituitary hormones. J Pineal Res 2: 121.CrossRefGoogle Scholar
  9. Beck-Friis, J., Kjellman, B.F., Aperia, B., Unden, F., Von Rosen, D., Ljunggren, J.-G., Wetterberg, L. (1985): Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand 71 (4): 319–330CrossRefGoogle Scholar
  10. Blackman, C.F. (1990): ELF effects on calcium homeostasis. In: Extremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., Anderson, L.E., eds. Columbus, OH: Battelle Press.Google Scholar
  11. Blask, D.E. (1984): The pineal: An oncostatic gland? In: The Pineal Gland, Reiter, R.J., ed. New York: Raven Press.Google Scholar
  12. Blask, D., Hill, S. (1986): Effects of melatonin on cancer: Studies on MCF-7 human breast cancer cells in culture. J Neural Transm 21 (Suppl): 433–449Google Scholar
  13. Bojkowski, C.J., Arendt, J. (1988): Annual changes in 6-sulfatoxymelatonin in man. Acta Endocrinol (Copenh) 117: 470–476Google Scholar
  14. Bostelmann, W., Gocke, H., Ernst, B., Tesmann, D. (1971): Der einfluss einer melatonin behandlung auf des wachstum des walker carcinosarcoma der ratte. Z Allg Pathol 114: 289Google Scholar
  15. Bowers, C.W., Baldwin, C., Zigmond, R.E. (1984): Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function. J Neurosci 4: 2010–2015Google Scholar
  16. Branchey, L., Weinberg, U., Branchey, M., Linkowski, P., Mendlewicz, J. (1982): Simultaneous study of 24 hour patters of melatonin and cortisol secretion in depressed patients Neuropsychobiology 8 (5): 255–232CrossRefGoogle Scholar
  17. Brown, R.P., Kocsis, J.H., Caroff, S., Amsterdam, J., Winokur, A., Stokes, P., Frazer, A. (1987): Depressed mood and reality disturbance correlate with decreased nocturnal melatonin in depressed patients. Acta Psychiatr Scand 76: 272–275CrossRefGoogle Scholar
  18. Bubinik, G.A., Purtill, R.A. (1980): The role of melatonin and dopamine in retinal physiology. Can J Physiol Pharmacol 58: 1457–1462Google Scholar
  19. Buzzell, G.R., Amerongon, H.M., Toma, J.G. (1988): Melatonin and the growth of Dunning R3327 rat prostatic adenocarcinoma. In: The Pineal Gland and Cancer, Gupta, D., Attanasio, A., Reiter, R.J., eds. London: Brain Research Promotion.Google Scholar
  20. Claustrat, B., Chazot, G., Brun, J., Jordan, D., Sassolas, G. (1984): A chronobiological study of melatonin and cortisol secretion in depressed subjects: Plasma melatonin, a biochemical marker in major depression. Biol Psychiatry 19 (8): 1215–1228Google Scholar
  21. Cohen, M., Lippman, M., Chabner, B. (1978): Role of pineal gland in etiology and treatment of breast cancer. Lancet 2: 814–816CrossRefGoogle Scholar
  22. Cook, M.R., Graham, C., Cohen, H.D., Garkovish, M.M. (1990): Effects of 60 Hz fields on human cardiac activity: Review and integration. In: Proc. 12th Annual Meeting of the Biolelectromagnetics Society, June 10–14, 1990, San Antonio, TXGoogle Scholar
  23. Cotman, C.W., Brinton, R.E., Galabruda, A., McEwen, B., Schneider, D.M., eds. (1987): The Neuro-Immune-Endocrine Connection. New York, Raven PressGoogle Scholar
  24. Creim, J.A., Lovely, R.H., Miller, D.L., Anderson, L.E. (1990): Assessment of rat’s behavior in a radial arm maze during exposure to magnetic fields. In: Proc. 12th Annual Meeting Abstracts, June 10–14, 1990, San Antonio, TXGoogle Scholar
  25. Danforth, D., Tamarkin, L., Chabner, B., Demoss, E., Lichter, A., Lippman, M. (1982): Altered diurnal secretory pattern of melatonin in patients with estrogen receptor positive breast cancer. Clin Res 30 (2): 532AGoogle Scholar
  26. d’Arsonval, A. (1896): Dispositifs pour la mesure des courants alternatifs a toutes frequences. Compi rend Soc Biol 3: 451Google Scholar
  27. Das Gupta, T.K., Terz, J. (1967): Influence of the pineal gland on growth and spread of melanonia in the hamster. Cancer Res 27: 1306Google Scholar
  28. Demers, P., Thomas, D.B., et al. (1990) Occupational exposure to electromagnetic radiation and breast cancer in males (abstract). Presented at the 23rd Annual Meeting of the Society for Epidemiologic Research, Snowbird Ski and Summer Resort, UT, June 15, 1990Google Scholar
  29. El-Domeiri, A.A.H., Das Gupta, T.K. (1973): Reversal by melatonin of the effect of pinealectomy on tumor growth. Cancer Res 33: 2280Google Scholar
  30. Glass, A.G., Hoover, R.N. (1990): Rising incidence of breast cancer: Relationship to stage and receptor status. J Natl Cancer Inst 82: 693–696CrossRefGoogle Scholar
  31. Graham, C., Cohen, H.D., Cook, M.R., Gerkovich, M.M., Phelps, J.W., Riffle, D.W. (1988): Effects of intermittent exposure to 60 Hz field effects on human cardiac activity. In Proc. 10th Annual Bioelectromagnetics Society Meeting. Stamford, CT, June 1988. Bioelectromagnetics Society Fredrick, MD.Google Scholar
  32. Groh, K.H., Readey, M.A., Ehret, C.F. (1990): Chronobiological effects of electric fields.Google Scholar
  33. B.W., Stevens, R.G., Anderson, L.E., eds.Columbus, OH: Battelle Press Hahn, R.A. Profound bilateral blindness and the incidence of breast cancer. (in preparation)Google Scholar
  34. Hariharasabramanian, N., Nair, N.P.V., Pilapil, C. (1985): Circadian rhythm of plasma melatonin and cortisol during the menstrual cycle. In: The Pineal Gland: Endocrine Aspects, Brown, G.M., Wainwright, S.D., eds. New York: Pergamon PressGoogle Scholar
  35. Kaune, W.T., Stevens, R.G., Callahan, N.J., Severson, R.K., Thomas, D.B. (1987): Residential magnetic and electric fields. Bioelectromagnetics 8: 315–335CrossRefGoogle Scholar
  36. Kneisley, LW, Maskowitz, M.A., Lynch, H.J. (1978): Cervical spinal lesions disrupt the rhythm in human melatonin excretion. J Neural Transm 13 (Suppl): 311–323Google Scholar
  37. Krause, K.G., Cremer-Bartels, G., Mitoskas, G. (1985): Effects of low magnetic field on human and avian retina. In: The Pineal Gland: Endocrine Aspects, Brown, G.M., Wainwright, S.D., eds. New York: Pergamon PressGoogle Scholar
  38. Kripke, D.F., Mullaney, D.J., Atkinson, M., Wolf, S. (1978): Circadian rhythm disorders in manic depressives. Biol Psychiatry 13: 135–351Google Scholar
  39. Kupfer, D.J., Foster, F.G., Cable, P., McPortland, R.J., Akrich, R.F. (1978): The application of EEG sleep for differential diagnosis of affective disorders. Am J Psychiatry 125: 64–74Google Scholar
  40. Leone, A.M., Silman, R.E., Hill, B.T., Whelan, R.D.H., Shellard, S.A. (1988): Growth inhibitory effects of melatonin and its metabolites against ovarian tumor cell lines in vitro. In: The Pineal Gland and Cancer, Gupta, D., Attanasio, A., Reiter, R.J., eds. London: Brain Research PromotionGoogle Scholar
  41. Lerchl, A., Nonaka, K.O., Reiter, R.J. Pineal gland: Its apparent magnetosensitivity to static magnetic fields is a consequence of induced electrical currents (eddy currents). J Pineal Res (in press)Google Scholar
  42. Lerchl, A., Nonaka, K.O., Stokkan, K.-A., Reiter, R.J. (1991): Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields. Biochim Biophys Res Commum 169: 102–108CrossRefGoogle Scholar
  43. Lewy, A., Sack, R., Miller, S., Hoban, T. (1987): Antidepressant and circadian phase-shifting effects of light. Science 235: 352–354CrossRefGoogle Scholar
  44. Lewy, A.J., Kern, H., Rosenthal, N.E., Wehr, T.A. (1982): Bright artificial light suppresses melatonin secreation in humans. Science 210: 1267–1269CrossRefGoogle Scholar
  45. Liboff, A.R. (1985): Cyclotron resonance in membrane transport. in: Interactions Between Electromagnetic Fields and Cells, Chiabrera, A., Nicolini, C., Schwan, H.P., eds. London: PlenumGoogle Scholar
  46. Liboff, A.R., McLeod, B.R., Smith, S.D. (1990): Ion cyclotron resonance effects of ELF fields in biological systems. In: Extremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., Anderson, L.E., eds. Columbus, OH: Battelle PressGoogle Scholar
  47. Maestroni, G.J.M., Conti, A., Pierpaoli, W. (1986): Role of the pineal gland in immunity: Circadian synthesis and release of melatonin modulates the antibody response and antagonizer immunosuppressive effect of corticosterone. J Neuroimmunol 13: 19–30CrossRefGoogle Scholar
  48. Mason, B.H., Holdaway, I.M., Mullins, P.R., Kay, R.G.. Skinner, S.J. (1985): Seasonal variation in breast cancer detection: Correlation with tumor progesterone receptor states. Breast Cancer Res Treat 5: 171–176Google Scholar
  49. Matanoski, G., Elliott, E., Breysse, P. (1989): Cancer incidence in New York telephone workers. Poster presented at the Annual Department of Energy-Electric Power Research Institute Contractor’s Review, Portland, OR, November 15, 1989Google Scholar
  50. Mendlewicz, J., Branchey, L., Weinberg, U., Branchey, M., Linkowski, P., Weitzman, E.D. (1980): The 24 hour patterns of plasma melatonin in depressed patients before and after treatment. Commun Psychopharmacol 1: 49–56Google Scholar
  51. McIntyre, I.M., Norman, T.R., Burrows, G.D., et al. (1990): Melatonin supersensitivity to dim light in seasonal affective disorder. Lancet 335: 488CrossRefGoogle Scholar
  52. Moore-Ede, M.C., Sulzman, F.M., Fuller, C.A. (1985): The Clocks That Time Us: Physiology of the Circadian liming System. Cambridge: Harvard University PressGoogle Scholar
  53. Nakatani, M., Ohara, Y., Katagiri, E., Nakano, K. (1940): (Original paper in Japanese) Studien uber die zirbellosen weiblichen weissen ratten. Nippon Byori Gakkai Kaishi 30: 232–236Google Scholar
  54. Narita, T., Kudo, H. (1985): Effect of melatonin on B-16 melanoma growth in athymic mice. Cancer Res 45: 4175–4177Google Scholar
  55. Olcese, J., Ruess, S., Semm, P. (1988): Geomagnetic field detection in rodents. Life Sci 42: 605–613CrossRefGoogle Scholar
  56. Papke, R.L., Podleski, T.R., Oswald, R.E. (1986): Effects of pineal factors on the action potentials of sympathetic neurons. Cell Mol Biol 6: 381–395Google Scholar
  57. Perry, F.S., Reichmanis, M., Marino, A.A., Becker, R.O. (1981): Environmental power frequency magnetic fields and suicide. Health Phys 41: 267–277CrossRefGoogle Scholar
  58. Perry, F.S., Pearl, L. (1988) Power frequency magnetic fields and illness in multi-storey blocks. Public Health 102: 11–18CrossRefGoogle Scholar
  59. Philo, R., Berkowitz, A.S. (1988): Inhibition of Dunning tumor growth by melatonin. J Urol 139: 1099–1102Google Scholar
  60. Polk, C., Postow, E. (1986): CRC Handbook of Biological Effects of ElectromagneticFields. Boca Raton: CRC PressGoogle Scholar
  61. Regelson, W., Pierpaoli, W. (1987): Melatonin; a rediscovered anti-tumor hormone. Its relation to surface receptor sex steroid metabolism. Immunologic response and chronobiologic factors in tumor growth and therapy. Cancer Invest 5 (4): 379–385Google Scholar
  62. Reichmanis, M., Perry, F.S., Marino, A.A., Becker, R.O. (1979): Relation between suicide and electromagnetic field of overhead power lines. Physiol Chem Phys 11: 395–403Google Scholar
  63. Reiter, R.J., Anderson, L.E., Buschbom, R.L., Wilson, B.W. (1988): Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60 Hz electric fields in utero and for 23 days after birth. Life Sci 42: 2203–2206CrossRefGoogle Scholar
  64. Rockwell, D.A., Hodggson, M.G., Beljan, J.R., Winget, C. (1976): Psychologic and psycho-physiologic response to 105 days of social isolation. Aviat Space Environ Med 47: 1087–1093Google Scholar
  65. Rodin, A.E. (1963): The growth and spread of Walker 256 carcinoma in pinealectomized rats. Cancer Res 23: 1545Google Scholar
  66. Savitz, D.A., Calle, E.E. (1987): Leukemia and occupational exposure to electromagnetic fields: Review and epidemiologic surveys. J Occup Med 29: 47–51Google Scholar
  67. Savitz, D.A., John, E.M., Kleckner, R.C. (1990): Magnetic field exposure from electric appliances and childhood cancer. Am J Epidemiol 131: 763–73Google Scholar
  68. Semm, P. (1983): Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol 76: 683–689CrossRefGoogle Scholar
  69. Shah, P.N., Mhatre, M.C., Kothari, L.S. (1984): Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 44: 3403–3407Google Scholar
  70. Stevens, R.G. (1987): Electric Power use and breast cancer, a hypothesis. Am J Epidemiol 125: 556–561Google Scholar
  71. Su, T.-S., London, E.D., Jaffe, J.H. (1988): Steroid binding of J receptors suggests a link between endocrine, nervous and immune systems. Science 240: 219–231Google Scholar
  72. Tamarkin, L.C., Roselle, D., Reichart, C., Lippman, M., Chabner, B. (1981): Melatonin inhibition and pinealectomy enhancement of 7, 12-dimethlbenz(a)anthrocene-induced mammary tumors in the rat. Cancer Res 41: 4432Google Scholar
  73. Tamarkin, L., Danforth, D., Lichter, A., Demoss, E., Cohen, M., Chabner, B., Lippman, M. (1982): Decreased nocturnal plasma melatonin peak in patients with estrogen receptor-positive breast cancer. Science 216: 1003–1005CrossRefGoogle Scholar
  74. Taub, J.M., Berger, R.J. (1974): Acute shifts in sleep wakefulness cycle: Effects on performance and mood. Psychosomat Med 36: 164–173Google Scholar
  75. Tenforde T.S. (1990): Biological interactions and human health effects of extremely low frequency magnetic fields. In: Extremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., Anderson, L.E., eds. Columbus, OH: Battlle PressGoogle Scholar
  76. Thériault, G. (1991): Health effects of electromagnetic radiation on workers: epidemiologic studies. Proc. Scientific Workwhop on the Health Effects of Electromagnetic Radiation on Workers. U.S. Dept. of Health and Human Services. Jan. 30–31, 1991, Cincinnati, OHGoogle Scholar
  77. Tynes, T., Andersen, A. (1990): Electromagnetic fields and male breast cancer. The Lancet 336: 1596CrossRefGoogle Scholar
  78. Vena, J.E., Graham, S., et al. (1990): Use of electric blankets and risk of postmenopausal breast cancer (abstract). Presented at the 23rd Annual Meeting of the Society for Epidemiologic Research, Snowbird Ski and Summer Resort, UT, June 15, 1990Google Scholar
  79. Wehr, T.A., Wertz, J.A., Goodwin, F.K., Duncan, W., Gillin, J.C. (1979): Phase-advance of circadian sleep-wake cycles as an anti-depressant. Science 206: 710–713CrossRefGoogle Scholar
  80. Welker, H.A., Semm, P., Willig, R.P., Commentz, J.C., Wiltschko, W., Vollrath, L. (1983): Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content on the rat pineal gland. Exp Brain Res 50: 426–432CrossRefGoogle Scholar
  81. Wilson, B.W. (1988): Chronic exposure to ELF fields may induce depression. Bioelectromagnetics 9: 195–205CrossRefGoogle Scholar
  82. Wilson, B.W., Chess, E.K., Anderson, L.E. (1986): 60 Hz electric field effects on pineal melatonin rhythms. Bioelectromagnetics 1: 239–242Google Scholar
  83. Wilson, B.W., Anderson, L.E., Hilton, D.I., Phillips, R.D. (1981): Chronic exposure to 60-Hz electric field: Effects on pineal function in the rat. Bioelectromagnetics 2: 371–380CrossRefGoogle Scholar
  84. Wilson, B.W., Anderson, L.E., Hilton, D.I., Phillips, R.D. (1983): Errata Bioelectromagnetics 4: 293CrossRefGoogle Scholar
  85. Wilson, B.W., Stevens, R.G., Anderson, L.E. (1989): Neuroendocrine-mediated effects of electromagnetic field exposure: Possible role of the pineal gland. Life Sci 45: 1319–1332CrossRefGoogle Scholar
  86. Wilson, B.W., Wright, C.W., Morris, J.E., Buschbom, R.L., Brown D.P., Miller, D.L., Sommers-Flannigan, R., Anderson LE (1990): Evidence for an effect of ELF electromagnetic fields on human pineal gland function. J Pineal Res 9: 259–269CrossRefGoogle Scholar
  87. Wilson, M.A. (1990): Extremely low frequency electromagnetic field effects on short term memory. In: Proceedings of the 12th Annual Meeting of the Bioelectromagnetics Society, June 10–14, 1990, San Antonio, TXGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Bary W. Wilson
  • Richard G. Stevens
  • Larry E. Anderson

There are no affiliations available

Personalised recommendations