Changes in Circadian Melatonin Synthesis in the Pineal Gland of Animals Exposed to Extremely Low Frequency Electromagnetic Radiation: A Summary of Observations and Speculation on Their Implications

  • Russel J. Reiter
Part of the Circadian Factors in Human Health and Performance book series (CFHH)


In recent decades there has been rapid growth of man-made electromagnetic fields as a consequence of increased industrial urbanization. Additionally, it is likely that industrial and technological advancements will further increase organismal exposure to electromagnetic radiation during the foreseeable future. Despite their exponential increase, the biological consequences of these non-ionizing radiations have been only sparingly investigated (Adey, 1981; Johnson and Guy, 1972). The results of these limited studies have shown, however, that there may be deleterious sequelae of these exposures in experimental animals and man (see for example, O’Connor and Lovely, 1988). Of special interest for this chapter is what is referred to as extremely low frequency (ELF; 50–60 Hz) electric and magnetic fields. Such fields are commonly associated with electric power generation and transmission systems.


Pineal Gland Syrian Hamster Melatonin Level Harderian Gland Melatonin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W.R. (1981): Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–514Google Scholar
  2. Adey, W.R. (1988): The cellular microenvironment and signaling through cell membranes. In: Electromagnetic Fields and Neurobehavioral Function, O’Conner, M.E., Lovely, R.H., eds. New York;Google Scholar
  3. Alan R. Liss Arendt, J. (1978): Melatonin assays in body fluids. J Neural Transm 13 (Suppl): 265–278Google Scholar
  4. Arendt, J. (1988): Melatonin and the human circadian system. In: Melatonin—Clinical Perspectives, Miles, A., Philbrick, D.R.S., Thompson, C., eds. Oxford: Oxford University PressGoogle Scholar
  5. Axelrod, J., Shein, H.M., Wurtman, R.J. (1969): Stimulation of Ctryptophan by noradrenaline in rat pineal in organ culture. Proc Natl Acad Sci USA 62: 644–649CrossRefGoogle Scholar
  6. Baldessarini, R.J., Kopin, I.J. (1966): -adenosylmethionine in brain and other tissues. J Neurochem 13: 769–777Google Scholar
  7. Bankoska, J.W., McKee, G.W., Graves, H.B. (1976): Ecological influence of electric fields. EPRI EA-178, Project 129, Interim Report #2, Electric Power Research Institute, Palo Alto, CaliforniaGoogle Scholar
  8. Binkley, S. (1983): Circadian rhythms of pineal function in rats. Endocr Rev 4: 245–270CrossRefGoogle Scholar
  9. Blask, D.E. (1984): The pineal: An oncostatic gland? In: The Pineal Gland Reiter, R.J., ed.New York: Raven PressGoogle Scholar
  10. Brownstein, M., Saavedra, J.M., Axelrod, J. (1973): Control of pineal N-acetyltransferase activity: Protection of stimulated activity by acetyl-CoA and related compounds. J Neurochem 26: 51–55Google Scholar
  11. Cardinali, D.P. (1981): Melatonin. A mammalian pineal hormone. Endocr Rev 2: 237–258CrossRefGoogle Scholar
  12. Champney, T.H., Holtorf, A.P., Steger, R.W., Reiter, R.J. (1984): Concurrent determination of enzymatic activities and substrate concentrations in the melatonin synthetic pathway within the same rat pineal gland. J Neurosci Res 11: 59–66CrossRefGoogle Scholar
  13. Craft, C.M., Morgan, W.W., Reiter, R.J. (1984): 24-hour changes in catecholamine synthesis in rat and hamster pineal glands. Neuroendocrinology 38: 193–198Google Scholar
  14. Cremer-Bartels, G., Krause, K., Kuchle, H.J. (1983): Influence of low magnetic field strength variations on retina and pineal glands of quail and humans. Graefe’s Arch Clin Exp Ophthal 220: 248–255CrossRefGoogle Scholar
  15. Deguchi, T. (1979): Ontogenesis and phylogenesis of circadian rhythm of serotonin N-acetyltransferase activity in the pineal gland. In: Biological Rhythms and their Control Mechanisms, Suda, M., Hayaishi, O., Nakagowa, H., eds. Amsterdam: Elsevier/North HollandGoogle Scholar
  16. Deguchi, T., Axelrod, J. (1972): A sensitive assay for serotonin N-acetyltransferase activity in the rat pineal. Anal Biochem 50: 174–179CrossRefGoogle Scholar
  17. Ebadi, M. (1984): Regulation of the synthesis of melatonin and its significance to neuroendocrinology. In: The Pineal Gland, Reiter, R.J., ed. New York: Raven PressGoogle Scholar
  18. Ferrier, I.N., Arendt, J., Johnstone, E.C., Craw, T.J. (1982): Reduced nocturnal melatonin secretion in chronic schizophrenia: Relationship to body weight. Clin Endocrinol 17: 181–186CrossRefGoogle Scholar
  19. Foley, P.B., Cairncross, K.D., Foldes, A. (1986): Pineal indoles: Significance and measurement. Neurosci Biobehav Rev 10: 273–293CrossRefGoogle Scholar
  20. Gavalas-Medici, R., Day-Magdaleno, S.R. (1976): Extremely low frequency, weak electric fields affect schedule controlled behavior in monkeys. Nature 261: 256–258CrossRefGoogle Scholar
  21. Gavalas, R.J., Walter, D.O., Hammer, J., Adey, W.R. (1970): Effect of low-level, low- frequency electric fields on EEG and behavior in Macaca memestrina. Brain Res 18: 491–501.Google Scholar
  22. Gonzalez-Brito/A., Jones, D.J., Ademe, R.M., Reiter, R.J. (1988): Characterization and measurement of [125]iodopindolol binding in individual rat pineal glands: Existence of a 24-h rhythm in beta-adrenergic receptor density. Brain Res 438: 108–114CrossRefGoogle Scholar
  23. Graves, H.B. (1977): Some biological effects of high intensity, low-frequency (60-Hz) electric fields on small birds and mammals. Second Symp. Tech. Exhib. Electromagnetic Compatibility, Montreaux, SwitzerlandGoogle Scholar
  24. Graves, H.B., Carter, J.H., Kellmel, D., Cooper, L. (1978): Perceptibility and electrophysiological response of small birds to intense 60-Hz electric fields. IEEE Trans Power Appar Syst PAS-97:1070–1073Google Scholar
  25. Hansson, H.A. (1981a): Lamellar bodies in Purkinje nerve cells experimentally induced by electric fields. Brain Res 216–187–191Google Scholar
  26. Hansson, H.A. (1981b): Purkinje nerve cell changes caused by electric fields: Ultrastruc-tural studies on long term effect on rabbits. Med Biol 59: 103–110Google Scholar
  27. Hjeresen, D.L., Kaune, W.T., Decker, J.R., Phillips, R.D. (1980): Effects of 60 Hz electric fields on avoidance behavior and activity of rats. Bioelectromagnetics 1: 299–312CrossRefGoogle Scholar
  28. Jaffe, R.A., Laszewski, B.L., Carr, D.B., Phillips, R.D. (1980): Chronic exposure to a 60-Hz electric field: Effects on synaptic transmission and peripheral nerve function in the rat. Bioelectromagnetics 1: 131–137CrossRefGoogle Scholar
  29. Jaffe, R. A., Laszewski, B.L., Carr, D.B. (1981): Chronic exposure to a 60-Hz electric field:Effects on neuromuscular function of the rat. Bioelectromagnetics 2: 227–239CrossRefGoogle Scholar
  30. Johnson, C.C., Guy, A.W. (1972): Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60: 692–718CrossRefGoogle Scholar
  31. Kaune, W.T., Phillips, R.D., Hjeresen, D.L., Richardson, R.L., Beamer, J.L. (1978): A method for the exposure of miniature swine to vertical 60-Hz electric fields. IEEE Trans Biomed Eng BME-25(3):276–283Google Scholar
  32. Klein, D.C., Weller, J.L. (1970): Indole metabolism in the pineal gland: A circadian rhythm in N-acetyltransferase. Science 169: 1093–1095CrossRefGoogle Scholar
  33. Klein, D.C., Sugden, D., Weller, J.L. (1983): Postsynaptic-adrenergic receptors potentiate the /3-adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc Natl Acad Sci USA 80: 599–603CrossRefGoogle Scholar
  34. Lewy, A.J. (1983): Biochemistry and regulation of mammalian melatonin production. In:The Pineal Gland, Relkin, R., ed. Amsterdam: Elsevier BiomedicalGoogle Scholar
  35. Maestroni, G.J.M., Conti, A., Pierpaoli, W. (1989): Melatonin, stress, and the immune system. Pineal Res Rev 7: 203–226Google Scholar
  36. Menendez-Pelaez, A., Howes, K.A., Gonzalez-Brito, A., Reiter, R.J. (1987): N-acetyltransferase activity, hydroxyindole-O-methyltransferase activity, and melatonin levels in the Harderian glands of female Syrian hamsters: Changes during the light: dark cycle and the effect of 6-parachlorophenylalanine administration. Biochem Biophys Res Commun 145: 1231–1238CrossRefGoogle Scholar
  37. Mhatre, M.C., van Jaarsveld, A., Reiter, R.J. (1988): Melatonin in the lacrimal gland: First demonstration and experimental manipulation. Biochem Biophys Res Commun 153–1186–1192Google Scholar
  38. Moore, R.Y., Klein, D.C. (1974): Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71: 17–33CrossRefGoogle Scholar
  39. O’Conner, M.E., Lovely, R.H. (eds) (1988): Electromagnetic Fields and Neurobehavioral Function, New York: Alan R. LissGoogle Scholar
  40. Olcese, J., Ruess, S., Semm, R (1988): Geomagnetic field detection in rodents. Life Sei 42: 605–613CrossRefGoogle Scholar
  41. Pang, S.F., Allen, A.E. (1986): Extra-pineal melatonin in the retina: Its regulation and physiological function. Pineal Res Rev 4: 55–96Google Scholar
  42. Pangerl, A., Pangerl, B., Reiter, R.J., Vaughan, G.M., Jones, D.J. (1989): Twenty-four hour variation of -adrenergic receptors in the pineal gland of the male Syrian hamster. Brain Res 490: 166–169CrossRefGoogle Scholar
  43. Pangerl, B., Pangerl, A., Reiter, R.J., Jones, D.J. (1989): Circadian variation of ß- adrenergic receptor binding sites in the pineal gland of the Syrian hamster and prevention of the nocturnal reduction by light exposure of propranolol treatment. Neuroen- docrinology 49: 570–573Google Scholar
  44. Reiter, R.J. (1974): Pineal-anterior pituitary gland relationships. In: MTP Int’l Review of Science-Physiology Series One, Vol. 5, Endocrine Physiology, McCann, S.M., ed. London: ButterworthsGoogle Scholar
  45. Reiter, R.J. (1980): The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1: 109–131CrossRefGoogle Scholar
  46. Reiter, R.J. (1981): The mammalian pineal gland: Structure and function. Am J Anat 162: 287–313CrossRefGoogle Scholar
  47. Reiter, R.J. (1986): Normal patterns of melatonin levels in the pineal gland and body fluids of humans and experimental animals. J Neural Transm (Suppl) 21: 35–54Google Scholar
  48. Reiter, R.J. (1987): The melatonin message: Duration versus coincidence hypotheses. Life Sei 40: 2119–2131CrossRefGoogle Scholar
  49. Reiter, R.J. (1988): Pineal gland, cellular proliferation and neoplastic growth: An historical account. In: The Pineal and Cancer, Gupta, D., Attanasio, A., Reiter, R.J., eds. Tübingen: Brain Research PromotionGoogle Scholar
  50. Reiter, R.J., Esquifino, A.I., Champney, T.H., Craft, C.M., Vaughan, M.K. (1985): Pineal melatonin production in relation to sexual development in the male rat. In: Paediatric Endocrinology, Gupta, D., Borrelli, P., Reiter, R.J., eds. London: Croom HelmGoogle Scholar
  51. Reiter, R.J., Anderson, L.E., Buschhorn, R.L., Wilson, B.W. (1988): Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Life Sei 42: 2203–2206CrossRefGoogle Scholar
  52. Rollag, M.D., Niswender, G.D. (1976): Radioimmunoassay of serum concentration of melatonin in sheep exposed to different lighting regiments. Endocrinology 98: 482–489CrossRefGoogle Scholar
  53. Rollag, M.D., Panke, E.S., Trakulrungsi, W., Trakulrungsi, C., Reiter, R.J. (1980): Quantification of daily melatonin synthesis in the hamster pineal gland. Endocrinology 106: 231–236CrossRefGoogle Scholar
  54. Rosenberg, R.S., Duffy, R.H., Sacher, G.A., Ehret, C.F. (1983): Relationship between field strength and arousal response in rats exposed to 60-Hz electric fields. Bioelec- tromagnetics 4: 181–191CrossRefGoogle Scholar
  55. Rudeen, P.K., Reiter, R.J., Vaughan, M.K. (1975): Pineal serotonin N-acetyltransferase in four mammalian species. Neurosci Lett 1: 225–229CrossRefGoogle Scholar
  56. Santana, C., Guerrero, J.M., Reiter, R.J., Menendez-Pelaez, A. (1989): Role of postsynaptic -adrenergic receptors in the ß-adrenergic stimulation of melatonin production in the Syrian hamster pineal gland. J Pineal Res 7: 13–22CrossRefGoogle Scholar
  57. Semm, P. (1988): The magnetic detection system of the pigeon: Involvement of pineal and retinal photoreceptors and the vestibular system. In: Electromagnetic Fields and Neuro- behavioral Function, O’Conner, M.E., Lovely, R.H., eds. New York: Alan R. LissGoogle Scholar
  58. Southern, W.E. (1972): Influence of disturbances in the earth’s magnetic field on ring-billed gull orientation. Condor 74: 102–108CrossRefGoogle Scholar
  59. Stern, S., Laties, V.G., Stancampiano, C.V., Cox, C., de Lorge J.O. (1983): Detection of 60-Hz electric fields by rats. Bioelectromagnetics 4: 215–247CrossRefGoogle Scholar
  60. Wilson, B.W., Snedden, W., Mullen, P.E., Silman, R.E., Smith, I., Landon, J. (1977): A gas chromatography-mass spectrometry method for the quantitative analysis of melatonin in plasma and cerebrospinal fluid. Anal Biochem 81: 283–291CrossRefGoogle Scholar
  61. Wilson, B.W., Anderson, L.E., Hilton, I., Phillips, R.D. (1981): Chronic exposure to 60 Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2: 371–380CrossRefGoogle Scholar
  62. Wilson, B.W., Anderson, L.E., Hilton, I., Phillips, R.D. (1983): Erratum: Chronic exposure to 60 Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2: 371–380CrossRefGoogle Scholar
  63. Wilson, B.W., Chess, E.K., Anderson, L.E. (1986): 60-Hz electric-field effects on pineal melatonin rhythms. Bioelectromagnetics 7: 239–242Google Scholar
  64. Wilson, B.W., Lueng, F., Bushboom, R., Stevens, R.G., Anderson, L.E., Reiter, R.J. (1988): Electric fields, the pineal gland, and cancer. In: The Pineal Gland and Cancer, Gupta, D., Attanasio, A., Reiter, R.J., eds. Tübingen: Brain Research PromotionsGoogle Scholar
  65. Wurtman, R.J., Axelrod, J. (1967): A 24-hour rhythm in the content of norepinephrine in the pineal and salivary glands of the rat. Life Sei 5: 665–669CrossRefGoogle Scholar
  66. Zatz, M. (1981): Pharmacology of the rat pineal gland. In: The Pineal Gland, Vol. I. Anatomy and Biochemistry, Reiter, R.J., ed. Boca Raton: CRC PressGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Russel J. Reiter

There are no affiliations available

Personalised recommendations