Calcium Channel Blockers and Neuroprotection

  • Giora Feuerstein
  • Jackie Hunter
  • Frank C. Barone
Part of the Advances in Neuroprotection book series (volume 22)


Stroke is most commonly the outcome of an obstruction of blood flow in a major cerebral vessel (usually the middle cerebral artery), which, if not resolved within a short period of time (minutes), will lead to a core of severely ischemic tissue that may not be salvaged. However, the ultimate size of the brain infarct also depends on the “penumbra,” a zone of tissue around the core of the infarct where blood flow is still maintained above a neuronal disabling level or the critical 20–25% of normal blood flow. If blood flow in the penumbral zone further decreases below a critical level of flow, the infarct zone will inevitably expand. The blood flow, therefore, is the driving force in determining the size of the core infarct and penumbral zones by providing the conditions essential to maintenance of cellular energy hemostasis (Siesjö, 1988a). The decrease in blood flow leads to reduction in phosphocreatinine (PCr) and ATP (especially the latter), and, if ischemia is prolonged, the energy source depletion will be sufficient to lead to severe impairment of cellular function by disruption of ATP-dependent processes (e.g., N+ /K+ ATPase). However, anoxia (lack of oxygen per se) may allow prolonged cellular survival (1 hr), which upon restoration of energy is not necessarily associated with the neuronal death seen in shorter episodes of brain ischemia. This discrepancy has forced researchers to examine the rapid consequences of ATP depletion which may not be readily reversed upon restoration of energy levels such as loss of ion homeostasis.


Cerebral Ischemia Calcium Antagonist Middle Cerebral Artery Occlusion Focal Cerebral Ischemia Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K, Kogure K, Watanabe T (1988): Prevention of ischemic and postischemic brain edema by a novel calcium antagonist (PN200–110). J Cereb Blood Flow Metab 8: 436–439CrossRefGoogle Scholar
  2. Abiko H, Mizoi K, Suzuki J, Oba M, Yoshimoto T (1988): Cerebral protective effect of flunarizine in a canine model of cerebral ischaemia. Neurol Res 10: 145–150Google Scholar
  3. Alps BJ, Calder C, Hass WK, Wilson AD (1988): Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischemic injury in the hippocampus of the Mongolian gerbil. Br J Pharmacol 93: 877–883Google Scholar
  4. Araki T, Kato H, Kogure K (1989): Selective neuronal vulnerability following transient cerebral ischemia in the gerbil: Distribution and time course. Acta Neurol Scand 80: 548–553CrossRefGoogle Scholar
  5. Araki T, Kogure K, Nishioka K (1990): Comparative neuroprotective effects of pentobarbital, vinpocetine, flunarizine and ifenprodil on ischemic neuronal damage in the gerbil hippocampus. Res Exp Med 190 (1): 19–23CrossRefGoogle Scholar
  6. Bielenberg GW, Burniol M, Rosen R, Klaus W (1990): Effects of nimodipine on infarct size and cerebral acidosis after middle cerebral artery occlusion in the rat. Stroke 21(Suppl IV):IV90–IV92Google Scholar
  7. Bielenberg GW, Haubruck H, Kriegelstein J (1987): Effects of calcium entry blocker emopamil on post ischemic energy metabolism of the isolated perfused rat brain. J Cereb Blood Flow Metab 7: 489–496CrossRefGoogle Scholar
  8. Bielenberg GW, Sauer D, Nuglisch J, Beck T, RoBberg C, Mennel HD, Krieglstein J (1989): Effects of emopamil on postischemic blood flow and neuronal damage in rat brain. Naunyn Schmiedebergs Arch Pharmacol 339: 230–235CrossRefGoogle Scholar
  9. Bogousslaysky J (1990): Double-blind study of nimodipine in nonsevere stroke. Eur Neurol 30: 23–30CrossRefGoogle Scholar
  10. Bunnell OS, Louis TM, Saldanha RL, Kopelman AE (1987): Protective action of the calcium antagonists flunarizine and nimodipine on cerebral ischemia. Med Sci Res 15: 1513–1514Google Scholar
  11. Calle PA, Bogaert MG, De Ridder L, Buylaert WA (1990): Nimodipine has no beneficial effect on neurological outcome in a cardiopulmonary arrest model in the rat. Naunyn Schmiedebergs Arch Pharmacol 341: 586–591CrossRefGoogle Scholar
  12. Choi DW (1988): Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634CrossRefGoogle Scholar
  13. Christie-Pope BC, Palmer GC (1986): Modulation of ischemic-induced damage to cerebral adenylate cyclase in gerbils by calcium channel blockers. Metab Brain Dis 1: 249–261CrossRefGoogle Scholar
  14. Clark WM, Madden KP, Zivin JA (1990): The lack of effect of flunarizine on preserving neurologic function after experimental stroke. Soc Neurosci Abstr 16: 935Google Scholar
  15. De Ryck M, Van Reempts J, Borgers M, Wauquier A, Janssen PAJ (1989): Photochemical stroke model: Flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke 20: 1383–1390CrossRefGoogle Scholar
  16. Fleckenstein A (1983): Calcium Antagonism in Heart and Smooth Muscle: Experimental Facts and Therapeutic Prospects. New York: John Wiley SonsGoogle Scholar
  17. Fryisawa A, Matsumoto M, Matsuyama T, Veda H, Namaka A, Yoneda S, Kruma K, Kamada T (1986): The effect of calcium antagonist nimodipine on the gerbil model of experimental cerebral ischemia. Stroke 17: 748–752CrossRefGoogle Scholar
  18. Gelmers HJ, Gurter K, deWeerdt CJ, Wiezer HHJ (1988): A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med 318: 203–207CrossRefGoogle Scholar
  19. Gelmers HJ, Hennerici M (1990): Effect of nimodipine on acute ischemic stroke, pooled results from five randomized trials. Stroke 21 (Suppl IV):IV81–IV84Google Scholar
  20. Germano IM, Bartkowski HM, Cassel ME, Pitts ZH (1987): The therapeutic value of nimodipine in experimental cerebral ischemia: Neurological outcome and histopathologic findings. JNeurosurg 67: 81–87CrossRefGoogle Scholar
  21. Ginsberg MD (1989): Efficacy of calcium channel blockers in brain ischemia: A critical assessment. In: Pharmacology of Cerebral Ischemia, Kriegelstein J, ed. Boca Raton, FL: CRC Press, pp 65–73Google Scholar
  22. Ginsberg MD, Lin B, Morikawa E, Dietrich WD, Busto R, Globus Y.-T (1991): Calcium antagonists in the treatment of experimental cerebral ischemia. Arzneimforsch/Drug Res 41 (I): 334–337Google Scholar
  23. Godfraind T, Miller R, Wibo M (1986): Calcium antagonists and calcium entry blockade. Pharmacol Rev 38: 321–416Google Scholar
  24. Gotoh O, Mohamed AH, McCulloch J, Graham DI, Harper AM, Teasdale GH (1986): Nimodipine and the hemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6: 321–331CrossRefGoogle Scholar
  25. Hadley MN, Szabramski JM, Spetzler RF, Rigamonti D, Fifield MS, Johnson PC (1989): The efficacy of intravenous nimodipine in the treatment of focal cerebral ischemia in a primate model. Neurosurgery 25: 63–70CrossRefGoogle Scholar
  26. Hoffman HP, Raschak M, Unger L (1989): (s)-Emopamil, a novel calcium and serotonin antagonist for the treatment of cerebrovascular disorders; 1st communication: Pharmacological profile. Arzneimittelforschung 39: 304–308Google Scholar
  27. Jacewicz M, Brint S, Tanabe J, Pulsinelli WA (1990): Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal cerebral ischemia. J Cereb Blood Flow Metab 10: 89–96CrossRefGoogle Scholar
  28. Jay SD, Ellis SB, McCue AF, Williams ME, Vedvick TS, Harpod MM, Campell KP (1990): Primary structure of the subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 248: 490–491CrossRefGoogle Scholar
  29. Kamei K, Tsuchida S, Taguchi K, Nishikibe M (1991): Effect of a new calcium entry blocker, NB-818, on delayed neuronal death in the ischemic gerbil hippocampus. Jpn J Pharmacol 56: 279–286CrossRefGoogle Scholar
  30. Kato H, Araki T, Kogure K (1990): Role of the excitotoxic mechanism in the development of neuronal damage following repeated brief cerebral ischemia in the gerbil. Brain Res 516: 175–179CrossRefGoogle Scholar
  31. Kawamura S, Shirasawa M, Fukasawa H, Yasui N (1991a): Attenuated neuropathology by nilvadipine after middle cerebral artery occlusion in rats. Stroke 22: 51–55CrossRefGoogle Scholar
  32. Kawamura S, Yasui N, Shirasawa M, Fukasawa (1991b): Effects of Cat+ entry blocker (nilvadipine) on acute focal cerebral ischemia in rats. Exp. Brain Res 83: 434–438Google Scholar
  33. Koch WJ, Hui A, Shull GE, Ellinor P, Schwartz A (1989): Characterization of cDNA clones encoding two putative isoform of the alpha-1 subunit of the dihydrophridine-sensitive voltage-dependent calcium channel isolated from rat brain and rat aorta. FEBS Lett 250: 386–388CrossRefGoogle Scholar
  34. Kornecki E, Ehrlich H (1988): Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240: 1792–1794CrossRefGoogle Scholar
  35. Krieglstein J, Sauer D, Nuglisch J, Karkoutly C, Beck C, Bielengberg GW, Rosberg C, Mennel HD (1989): Calcium antagonists protect hippocampal neurons against ischaemic damage. Prog Clin Biol Res 317: 393–400Google Scholar
  36. Kucharczyk J, Chew W, Derugin N, Moseley M, Rollin C, Berry I, Norman D (1989): Nicardipine reduces ischemic brain injury: Magnetic resonance imaging/ spectroscopy study in cats. Stroke 20: 268–274CrossRefGoogle Scholar
  37. Limburg M, Hijda A (1990): Flunarizine in acute ischemic stroke: A pilot study. Eur Neurol 30: 121–122CrossRefGoogle Scholar
  38. Lin B, Dietrich D, Busto R, Ginsburg MD (1990): (s)-Emopamil protects against global ischemic brain injury in rats. Stroke 21: 1734–1739Google Scholar
  39. Martinez-Vila E, Guillen F, Villanueva JA, Matias Guli J, Bigorra J, Gil P, Carbonell A, Martinez Lage LM (1990): A placebo controlled trial of nimodipine in the treatment of acute ischemic cerebral infarction. Stroke 21: 1023–1028CrossRefGoogle Scholar
  40. Meyer FB, Anderson RE, Sundt TM (1990): The novel dihydronaphthyridine Cat+ channel blocker CI-951 improves CBF, brain pH, and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10: 97–103CrossRefGoogle Scholar
  41. Meyer FB, Anderson RE, Yakesh TL, Sundt TM (1986): Effect of nimodipine on intracellular pH, cortical blood flow and EEG in experimental focal cerebral ischemia. J Neurosurg 64: 617–626CrossRefGoogle Scholar
  42. Miller AJ (1987): Multiple calcium channels and neuronal function. Science 235: 46–52CrossRefGoogle Scholar
  43. Morikawa E, Ginsburg MD, Dietrich D, Duncan RC, Busto R (1991): Post-ischemic (s)-emopamil therapy ameliorates focal ischemic brain injury in rats. Stroke 22: 355–360CrossRefGoogle Scholar
  44. Mossakowski MJ, Godamski R (1987): Influence of the calcium channel blocker on the ischemic changes in sector CAI pyramidal neurons of Ammon’s horn in Mongolian gerbils. Neuropathology 25: 439–450Google Scholar
  45. Murphy JJ, TRUST Trial Coordinator (1990): Randomized, double-blind, placebo controlled trial of nimodipine in acute stroke. Lancet 336: 1205–1209CrossRefGoogle Scholar
  46. Nakayama H, Ginsberg MD, Dietrich WD (1988): (s)-Emopamil, a novel calcium channel blocker and serotonin S2 antagonist markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673Google Scholar
  47. Paci A, Ottaviano P, Trenta A, Iannone G, DeSantis L, Lancia G, Moschini E, Carosi M, Amigoni S, Coresia L (1989): Nimodipine in acute ischemia stroke. Acta Neurol Scand 80: 282–286CrossRefGoogle Scholar
  48. Paschen W, Hallmayer J, Rohn G (1988): Relationship between putrescine content and density of ischemic cell damage in the brain of Mongolian gerbils: Effect of nimodipine and barbiturate. Acta Neuropathol 76: 388–394CrossRefGoogle Scholar
  49. Pickard JD, Murray GD, Illingsworth R, et al. (1989): Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid hemorrhage: British aneurism nimodipine trial. Br Med J 298: 636–642CrossRefGoogle Scholar
  50. Poignet H, Beaughard M, Lecoin G, Massingham R (1989): Functional, behavioral, and histological changes induced by transient global cerebral ischemia in rats: Effects of cinnarizine and flunarizine. J Cereb Blood Flow Metab 9: 646–654CrossRefGoogle Scholar
  51. Rothman SM, Olney JW (1986): Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann Neurol 19: 105–111CrossRefGoogle Scholar
  52. Sauter A, Rudin M (1986): Calcium antagonists reduce the extent of infarction in rat middle cerebral artery occlusion model as determined by quantitative magnetic resonance imaging. Stroke 17: 1228–1234CrossRefGoogle Scholar
  53. Sauter A, Rudin M (1990): Calcium antagonist for reduction of brain damage in stroke. J Cardiovasc Pharmacol 15 (Suppl I): 543–547Google Scholar
  54. Sauter A, Rudin M (1991): Prevention of stroke and brain damage with calcium antagonists in animals. Am J Hypertension 4: 121S - 127SGoogle Scholar
  55. Scott RH, Dolphin AC, Bindokas VP, Adams ME (1990): Inhibition of neuronal Cat+ channel currents by the funnel web spider toxin w-Aga-IA. Mol Pharmacol 38: 711–718Google Scholar
  56. Scriabine A, Schuurman T, Traber J (1989): Pharmacological basis for the use of nimodipine in central nervous system disorders. FASEB J 3: 1799–1806Google Scholar
  57. Seisjö BK (1988a): Mechanisms of ischemic brain damage. Crit Care Med 16: 954–963CrossRefGoogle Scholar
  58. Seisjö BK (1988b): Historical overview: Calcium, ischemia and death of brain cells. Ann NY Acad Sci 522: 638–661CrossRefGoogle Scholar
  59. Shiino A, Matsuda M, Susumu T, Handa J (1991): Effects of the calcium antagonist nilvadipine on focal cerebral ischemia in spontaneously hypertensive rats. Surg Neurol 35: 105–110CrossRefGoogle Scholar
  60. Steen PA, Gisrold SE, Milde JH, Newberg LA, Scheithauer BW, Lanier WL, Michenfelder JD (1985): Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 62: 406–411CrossRefGoogle Scholar
  61. Steen PA, Newberg LA, Milde JH, Michenfelder JD (1983): Nimodipine improves cerebral blood flow and neurological recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 3: 38–43CrossRefGoogle Scholar
  62. Steen PA, Newberg LA, Milde JH, Michenfelder JD (1984): Cerebral blood flow and neurologic outcome when nimodipine is given after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 4: 82–87CrossRefGoogle Scholar
  63. Triggle DJ, Langs DA, Janis RA (1989): Caz+ channel ligands: Structure-function relationships of the 1,4–dihydropyridines. Med Res Rev 9: 123–180CrossRefGoogle Scholar
  64. Triggle DJ (1972): Effect of calcium on excitable membranes and neurotransmitter actions. Prog Surg Mem Sci 5: 267–331Google Scholar
  65. Triggle DJ (1990): Calcium antagonists: History and perspectives. Stroke 21 (Suppl IV): IV49–IV58Google Scholar
  66. Uematsu D, Greenberg JH, Hickey WF, Reivich M (1989a): Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 20: 1531–1537CrossRefGoogle Scholar
  67. Uematsu D, Greenberg JH, Reivich M, Hickey WF (1989b): Direct evidence for calcium-induced ischemic and reperfusion injury. Ann Neurol 26: 280–283CrossRefGoogle Scholar
  68. Vibulsresth S, Deitrich WD, Busto R, Ginsburg MD (1987): Failure of nimodipine to prevent ischemic neuronal damage in rats. Stroke 18: 210–216CrossRefGoogle Scholar
  69. Welsch M, Nuglisch J, Krieglstein J (1990): Neuroprotective effect of nimodipine is not mediated by increased cerebral blood flow after transient forebrain ischemia in rats. Stroke 21 (Suppl IV):IV105–IV107Google Scholar
  70. Yao L, Ding D (1990): Effect of nicardipine on somatosensory evoked potentials in patients with acute cerebral infarction. J Neurol Neurosurg Psychiat 55: 844–846CrossRefGoogle Scholar
  71. Yoshidomi M, Hayashi T, Abe K, Kogure K (1989): Effects of a new calcium channel blocker, KB-2796, on protein synthesis of the CAI pyramidal cell and delayed neuronal death following transient forebrain ischemia. J Neurochem 53: 1589–1594CrossRefGoogle Scholar
  72. Yue T-L, Lysko PG, Feuerstein G (1990): Production of platelet-activating factor from rat cerebellar granule cells in culture. J Neurochem 57: 1809–1811CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Giora Feuerstein
  • Jackie Hunter
  • Frank C. Barone

There are no affiliations available

Personalised recommendations