Excitotoxicity, Cerebral Ischemia, and Neuroprotection by Competitive NMDA Receptor Antagonists

  • Dirk Sauer
  • Lourdes Massieu
  • Peter R. Allegrini
  • Hugo Amacker
  • Markus Schmutz
  • Graham E. Fagg
Part of the Advances in Neuroprotection book series (volume 22)


The concept of excitotoxicity, meaning the damage or death of neurons resulting from hyperactivation of excitatory cellular mechanisms, arose from the extensive histologic studies of Olney and his colleagues during the early 1970s. These investigators found that excitatory amino acids such as glutamate, when administered to immature rodents, induced degenerative changes in neurons in the retina and in the hypothalamus (Olney, 1971; Olney et al., 1971). Subsequent studies showed that there was a good correlation between the neurotoxic and neuroexcitatory potencies of a range of related amino acids, suggesting that there was a direct causal relationship between cellular activation and cell death (see Rothman and Olney, 1987).


NMDA Receptor Cerebral Ischemia Middle Cerebral Artery Occlusion Excitatory Amino Acid NMDA Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers GW (1990): Potential therapeutic uses of N-methyl-D-aspartate antagonists in cerebral ischemia. Clin Neuropharmacol 13: 177–197CrossRefGoogle Scholar
  2. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984): Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischaemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374CrossRefGoogle Scholar
  3. Benveniste H, Jorgensen MB, Diemer NH, Hansen AJ (1988): Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand 78: 529–536CrossRefGoogle Scholar
  4. Bielenberg GW (1989): Pre-or postischemic treatment with NMDA antagonists reduces infarct size after MCA occlusion in rat. J Cereb Blood Flow Metab 9: S298Google Scholar
  5. Brown AW, Brierley JB (1972): Anoxic ischemic cell change in rat brain: Light microscopic and fine structural observations. J Neurol Sci 16: 59–84CrossRefGoogle Scholar
  6. Buchan AM (1990): Do NMDA antagonists protect against cerebral ischemia: Are clinical trials warranted? Cerebrovasc Brain Metab Rev 2: 1–26Google Scholar
  7. Bullock R, Graham DI, Chen M-H, Lowe D, McCulloch J (1990): Focal cerebral ischemia in the cat: Pretreatment with a competitive NMDA receptor antagonist, D-CPP-ene. J Cereb Blood Flow Metab 10: 668–674CrossRefGoogle Scholar
  8. Butcher SP, Bullock R, Graham DI, McCulloch J (1990): Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 21: 1727–1733CrossRefGoogle Scholar
  9. Choi DW, Maulucci-Gedde MA, Kriegstein AR (1987): Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 357–368Google Scholar
  10. Choi DW (1988): Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634CrossRefGoogle Scholar
  11. Choi DW (1990): Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2: 105–147Google Scholar
  12. Coyle JT (1983): Neurotoxic action of kainic acid. J Neurochem 41: 1–11CrossRefGoogle Scholar
  13. Deshpande JK, Siesjö BK, Wieloch T (1987): Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7: 89–95CrossRefGoogle Scholar
  14. DiFiglia M (1990): Excitotoxic injury of the neostriatum: A model for Huntington’s disease. TINS 13: 286–289Google Scholar
  15. Duverger D, MacKenzie ET (1988): The quantification of cerebral infarction following focal ischemia in the rat: Influence of strain, arterial pressure, blood glucose concentration and age. J Cereb Blood Flow Metab 8: 449–461CrossRefGoogle Scholar
  16. Dux E, Mies G, Hossman K-A, Siklos L (1987): Calcium in the mitochondria following brief ischemia of gerbil brain. Neurosci Lett 78: 295–300CrossRefGoogle Scholar
  17. Evans MC, Griffiths T, Meldrum BS (1984): Kainic acid seizures and the reversibility of calcium loading in vulnerable neurons in the hippocampus. Neuropathol Appl Neurobiol 10: 285–302CrossRefGoogle Scholar
  18. Fagg GE, Olpe H-R, Pozza MF, Baud J, Steinmann M, Schmutz M, Portet C, Baumann P, Thedinga K, Bittiger H, Allgeier H, Heckendorn R, Angst C, Brundish D, Dingwall JG (1990): CGP 37849 and CGP 39551: Novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity. Br J Pharmacol 99: 791–797Google Scholar
  19. Fagg GE, Massieu L, Schmutz M, Pozza MF, Brugger F, Olpe H-R (1991): CGP 37849 is an orally-bioavailable competitive NMDA receptor antagonist with potent anticonvulsant and neuroprotective properties. In: Excitatory Amino Acids 1990, Moroni F, Meldrum B, eds. New York: Raven Press, pp 687–693Google Scholar
  20. Foster AC, Gill R, Woodruff GN (1988): Neuroprotective effects of MK-801 in vivo: Selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J Neurosci 8: 4745–4754Google Scholar
  21. Ginsberg MD, Busto R (1989): Rodent models of cerebral ischemia. Stroke 20: 1627–1642CrossRefGoogle Scholar
  22. Globus MY-T, Dietrich WD, Busto R, Valdes I, Ginsberg MD (1989): The combined treatment with a dopamine D, antagonist (SCH-23390) and NMDA receptor blocker (MK-801) dramatically protects against ischemia-induced hippocampal damage. J Cereb Blood Flow Metab 9: S5CrossRefGoogle Scholar
  23. Graham SH, Shiraishi K, Panter SS, Simon RP, Faden A (1990): Changes in extracellular amino acid neurotransmitters produced by focal cerebral ischemia. Neurosci Lett 110: 124–130CrossRefGoogle Scholar
  24. Hillered L, Hallström A, Segersvärd S, Persson L, Ungerstedt U (1989): Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9: 607–616CrossRefGoogle Scholar
  25. Johansen FF, Jorgensen MB, Diemer NH (1986): Ischemic CAI pyramidal cell loss is prevented by pre-ischemic colchicine destruction of dentate gyrus granule cells. Brain Res 377: 344–347CrossRefGoogle Scholar
  26. Jorgensen MB, Johansen FF, Diemer NH (1987): Removal of the entorhinal cortex protects hippocampal CAI neurons from ischemic damage. Acta Neuropathol 73: 189–194CrossRefGoogle Scholar
  27. Kirino T (1982): Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57–69CrossRefGoogle Scholar
  28. Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DEB, Steel DJ, Williams M, Cheney DL, Wood PL (1988): CGS 19755, a selective and competitive N-methyl-o-aspartate-type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246: 65–75Google Scholar
  29. Lowe DA, Neijt HC, Aebischer B (1990): D-CPPene (SDZ EAA 494), a potent and competitive NMDA antagonist: Effect on spontaneous activity and NMDAinduced depolarizations in the rat cortical slice preparation, compared with other CPP derivatives and MK 801. Neurosci Lett 113: 315–321CrossRefGoogle Scholar
  30. Mangano RM, Schwarcz R (1983): Chronic infusion of endogenous excitatory amino acids into rat striatum and hippocampus. Brain Res Bull 10: 47–51CrossRefGoogle Scholar
  31. Meldrum BS (1985): Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin Sci 68: 113–122Google Scholar
  32. Meldrum BS (1990): Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc Brain Metab Rev 2: 27–57Google Scholar
  33. Meldrum BS, Garthwaite J (1990): Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11: 379–387CrossRefGoogle Scholar
  34. McCulloch J, Bullock R, Teasdale GM (1991): Excitatory amino acid antagonists: Opportunities for the treatment of ischemic brain damage in man. In: Excitatory Amino Acid Antagonists, Meldrum B, ed. Oxford: Blackwell, pp 287–326Google Scholar
  35. Nagasawa H, Kogure K (1989): Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20: 1037–1043CrossRefGoogle Scholar
  36. Nedergaard M, Gjedde A, Diemer NH (1986): Focal ischemia of the rat brain: Autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab 6: 414–424CrossRefGoogle Scholar
  37. Nicholls D, Attwell D (1990): The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11: 462–468CrossRefGoogle Scholar
  38. Olney JW (1971): Glutamate induced neuronal necrosis in the infant mouse hypothalamus. J Neuropathol Exp Neurol 30: 75–90CrossRefGoogle Scholar
  39. Olney JW, Ho OL, Rhee V (1971): Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14: 61–76CrossRefGoogle Scholar
  40. Onodera H, Sato G, Kogure K (1986): Lesions to Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci Lett 68: 169–174CrossRefGoogle Scholar
  41. Ozyurt E, Graham DI, Woodruff GN, McCulloch J (1988): The protective effect of the glutamate antagonist MK-801 in focal cerebral ischaemia in the cat. J Cereb Blood Flow Metab 8: 757–762CrossRefGoogle Scholar
  42. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988): The glutamate antagonist MK 801 reduces focal ischemic brain damage in the rat. Ann Neurol 24: 543–551CrossRefGoogle Scholar
  43. Patel S, Chapman AG, Millan MH, Meldrum BS (1988): Epilepsy and excitatory amino acid antagonists. In: Excitatory Amino Acids in Health and Disease, Lodge D, ed. Chichester: WileyGoogle Scholar
  44. Pozza MF, Olpe H-R, Brugger F, Fagg GE (1990): Electrophysiological characterization of a novel potent and orally-active NMDA receptor antagonist: CGP 37849 and its ethylester CGP 39551. Eur J Pharmacol 182: 91–100CrossRefGoogle Scholar
  45. Prince DA, Feeser HR (1988): Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett 85: 291–296CrossRefGoogle Scholar
  46. Pulsinelli WA, Brierley JB, Plum F (1982): Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498CrossRefGoogle Scholar
  47. Rothman SM, Olney JW (1987): Excitotoxicity and the NMDA receptor. Trends Neurosci 10:299–302 CrossRefGoogle Scholar
  48. Sauter A, Rudin M (1986): Calcium antagonists reduce the extent of infarction in rat middle cerebral artery occlusion model as determined by quantitative magnetic resonance imaging. Stroke 17: 1228–1234CrossRefGoogle Scholar
  49. Schmutz M, Portet C, Jeker A, Klebs K, Vassout A, Allgeier H, Heckendorn R, Fagg GE, Olpe H-R, Van Riezen H (1990): The competitive NMDA receptor antagonists CGP 37849 and CGP 39551 are potent, orally-active anticonvulsants in rodents. Naunyn Schmiedeberg’s Arch Pharmacol 342: 61–66CrossRefGoogle Scholar
  50. Schwarcz R, Whetsell WO, Mangano RM (1983): Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316–318CrossRefGoogle Scholar
  51. Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honoré T (1990): 2,3Dihydroxy-6–nitro-7–sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science 247: 571–574Google Scholar
  52. Shiraishi K, Sharp FR, Simon RP (1989): Sequential metabolic changes in rat brain following middle cerebral artery occlusion: A 2–deoxyglucose study. J Cereb Blood Flow Metab 9: 765–773CrossRefGoogle Scholar
  53. Siesjö BK, Bengtsson F (1989): Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140CrossRefGoogle Scholar
  54. Simon R, Shiraishi K (1990): N-Methyl-D-aspartate antagonist reduces stroke size and regional glucose metabolism. Ann Neurol 27: 606–611CrossRefGoogle Scholar
  55. Steinberg GK, Janshid S, Kunis D (1988): Delayed treatment with dextromethorphan and dextrorphan reduces cerebral damage after transient focal ischemia. Neurosci Lett 89: 193–197CrossRefGoogle Scholar
  56. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981): Focal cerebral ischemia in the rat. I. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–60CrossRefGoogle Scholar
  57. Tamura A, Kirino T, Sano K, Tomukai N, Hirakawa M, Narita K (1988): Effect of blocker of excitatory amino acid neurotransmitter on focal cerebral ischemia. J Clin Exp Med 146: 131–132Google Scholar
  58. Van Reempts J (1984): The hypoxic brain: Histological and ultrastructural aspects. Behav Brain Res 14: 99–108CrossRefGoogle Scholar
  59. Watkins JC, Krogsgaard-Larsen P, Honoré T (1990): Structure-activity relations in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33CrossRefGoogle Scholar
  60. Wieloch T, Lindvall O, Blomquist P, Gage FH (1985): Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol Res 7: 24–26Google Scholar
  61. Willetts J, Balster RL, Leander JD (1990): The behavioural pharmacology of NMDA receptor antagonists. Trends Pharmacol Sci 11: 423–428CrossRefGoogle Scholar
  62. Yamada K, Fuji K, Nabeshima T, Kamegama T (1990): Neurotoxicity induced by continuous infusion of quinolinic acid into the lateral ventricle in rats. Neurosci Lett 118: 128–131CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Dirk Sauer
  • Lourdes Massieu
  • Peter R. Allegrini
  • Hugo Amacker
  • Markus Schmutz
  • Graham E. Fagg

There are no affiliations available

Personalised recommendations