Advertisement

Gangliosides: New Generation of Neuroprotective Agents

  • Sahebarao P. Mahadik
Part of the Advances in Neuroprotection book series (volume 22)

Abstract

The use of gangliosides for protection of cellular elements from CNS injuries (neuroprotection) is timely and opportunistic. Exogenous gangliosides have been used in animals for more than 15 years to treat mechanical, chemical, and environmental injuries to the CNS. The beneficial effects of use of gangliosides have been evaluated using paradigms that have led to reduction in the loss of functional (behavioral) and structural (morphologic and chemical) deficits associated with injury. The mechanisms of their beneficial effects have been further investigated using a variety of in vitro tissue culture models. Initial studies had primarily been designed to prove that treatment with gangliosides enhanced neural plasticity by stimulating growth and regeneration. Although the significance of this plasticity to the overall long-term recovery following CNS injury is yet to be understood, it is clear that ganglioside treatment has had considerable effect on the reduction of losses in structural and functional parameters associated with acute injury processes. Based on these studies, gangliosides have been used in clinical trials to treat a variety of degenerative diseases, e.g., Alzheimer’s disease, amyotrophic lateral sclerosis, diabetes neuropathies, chronic alcohol neuropathies, tardive dyskinesias, and (recently) CNS strokes.

Keywords

Nerve Growth Factor Middle Cerebral Artery Occlusion Ischemic Injury Membrane Fatty Acid Injury Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel EL (1984): Fetal Alcohol Syndrome and Fetal Alcohol Effects. New York: Plenum PressGoogle Scholar
  2. Agnati LF, Fuxe K, Calza L, Benfanti F, Cavicchioli F, Toffano G (1983): Gangliosides increase the survival of lesioned dopamine neurons and or the dopaminergic synaptic function in striatum of rats by collateral sprouting. Acta Physiol Scand 119: 347–363Google Scholar
  3. Aldinio C, Valenti G, Savoini GE, Kerschner G, Agnati LF, Toffano G (1984): Monosialoganglioside internal ester stimulates the dopaminergic reinnervation of the striatum after unilateral hemitransection in rat. Int J Dev Neurosci 2: 267–276Google Scholar
  4. Ando S (1983): Gangliosides in the nervous system. Neurochem In 5: 505–537Google Scholar
  5. Ando S, Chang N-C, Yu RK (1978): High-performance thin-layer chromatography and densitometric determination of brain ganglioside composition of several species. Anal Biochem 89: 437–450Google Scholar
  6. Argentino C, Saccheti ML, Toni D, Savoini G, D’Arcangelo A, Erminio F, Federico F, Ferro Millone F, Gallai V, Gambi D, Mamoli A, Ottonelio GA, Ponari O, Rebucci G, Senin U, Fiechi C (1989): GM1 ganglioside therapy in acute ischemic stroke. Stroke 29: 1143–1149Google Scholar
  7. Arvin B, Neville LF, Roberts PJ (1988): 2–Chloroadenosine prevents kainic acid-induced toxicity in striatum. Neurosci Lett 93: 336–340Google Scholar
  8. Astrup J (1982): Energy-requiring cell functions in the ischemic brain. JNeurosurg 56: 482–497Google Scholar
  9. Avrova NF, Chenykaeva EY, Obuklova EL (1974): Ganglioside composition and content of rat brain subcellular fraction. J Neurochem 20: 997–1004Google Scholar
  10. Baker PF (1976): The regulation of intracellular calcium. Symp Soc Exp Biol 30: 60–88Google Scholar
  11. Bar-Sinai A, Aldouby Y, Chorev M, Levitzki A (1986): Association of turkey erythrocyte 3–adrenoceptors with a specific lipid component. EMBO J 5: 1175–1180Google Scholar
  12. Bazan NG (1970): Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218: 1–10Google Scholar
  13. Bazan NG (1976): Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 72: 317–335Google Scholar
  14. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984): Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocamus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374Google Scholar
  15. Beyer I, Haselhorst U, Schenk H, Sue A, von Keyserlingk H (1990): The effect of abstinence in alcoholics of erythrocyte gangliosides. Drug Alcohol Depend 26: 89–92Google Scholar
  16. Bharucha VA, Wakade CG, Karpiak SE, Mahadik SP (1989): ATPase levels after ischemia indicate membrane failure. Trans Am Soc Neurochem 20: 162Google Scholar
  17. Bharucha VA, Ortiz A, Wakade CG, Karpiak SE (1991): Behavioral dysfunctions following focal ischemia: GM1 reduces functional deficits. Exp Neurol 114: 136–139.Google Scholar
  18. Bianchi R, Janigro D, Milan F, Giudici G, Gorio A (1986): In vivo treatment with GM1 prevents the rapid decay of ATPase activity and mitochondrial damage in hippocampal slices. Brain Res 364: 400–404Google Scholar
  19. Borzeix MG, Cahn R, Cahn J (1989): Effect of brain gangliosides on early and late consequences of a transient incomplete forebrain ischemia in the rat. Pharmacology 38: 167–176Google Scholar
  20. Braughler JM, Hall DE (1989): Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radical Biol Med 16: 289–301Google Scholar
  21. Braune S (1991): Is ganglioside GM1 effective in the treatment of stroke? Drugs Aging 1: 57–66Google Scholar
  22. Breckenridge WC, Gombos G, Morgan I (1972): The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266: 695–707Google Scholar
  23. Byrne MC, Ledeen RW, Roisen FJ, Yorke G, Sclafani JR (1983): Gangliosideinduced neuritogenesis: Verification that gangliosides are the active agents, and comparison of molecular species. J Neurochem 41: 1214–1222Google Scholar
  24. Cahn J, Borzeix MG, Toffano G (1986): Effect of GM1 ganglioside and of its internal ester derivative in a model of transient cerebral ischemia in the rat. In: Gangliosides and Neuronal Plasticity, Tettamanti G, Ledeen RW, Sandhoff K, Nagai Y, and Toffano G, eds. pp 435–444 New York: Springer-VerlagGoogle Scholar
  25. Cahn R, Borzeix MG, Aldinio C, Toffano G, Cahn J (1989): Influence of monosialoganglioside inner ester on neurological recovery after global ischemia in monkeys. Stroke 20: 652–656Google Scholar
  26. Cao W, Carney JM, Duchon A, Floyd RA (1988): Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88: 233–238Google Scholar
  27. Carafoli E (1987): Intracellular calcium homeostasis. Annu Rev Biochem 56: 395–433Google Scholar
  28. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD (1986): A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction. Stroke 17: 738–743Google Scholar
  29. Cherian L, Mathew J, Klemm WR (1989): Ethanol-induced hydrolysis of brain sialoglycoconjugates in the rat: Effect of sialic acid in antagonizing ethanol intoxication. Alcohol Clin Exp Res 13: 435–438Google Scholar
  30. Choi DW (1987): Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379Google Scholar
  31. Choi DW (1988): Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469Google Scholar
  32. Choi DW (1990): Glutamate neurotoxicity: A three-stage process. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A ed., Fidia Res Fond Symp Ser 4: 235–242Google Scholar
  33. Cohen BM, Zubenko GS (1985): In vivo effects of psychotrophic agents on the physical properties of cell membranes in the rat brain. Psychopharmacology 86: 365–368Google Scholar
  34. Cohen G (1982): The Pathology of Oxygen, Autor A, ed. New York: Academic Press. pp 115–126Google Scholar
  35. Costa E, Fadda E, Kozikowsky AP, Nicoletti F, Wroblewsky JT (1988a): Classification and allosteric modulation of exitatory amino acid signal transduction in brain slices and primary cultures of cerebellar neurons. In: Neurobiology of Amino Acids, Peptides, and Trophic Factors, Ferrendelli JA, Collins RC, Johanson EM, eds. Boston: Martinus Nijhoff, pp 35–50Google Scholar
  36. Costa E, Guidotti A, Manev H, Szekelly AM, Wroblewsky JT (1988b): Signal transduction at excitatory amino acid receptors: Modulation by gangliosides. Neurol Neurobiol 46: 29–38Google Scholar
  37. Cuello AC, Stephens PH, Tagari PC, Sofroniew MV, Pearson RCA (1986): Retrograde changes in the nucleus basalis of rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res 376: 373–377Google Scholar
  38. Cuello AC, Garofalo L, Kenigsberg RL, Maysinger D (1989): Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc. Natl. Acad. Sci. USA 86: 2056–2060Google Scholar
  39. Date I, Felten SY, Felten DL (1989): Exogenous GM1 gangliosides induce partial recovery of the nigrostriatal dopaminergic system in MPTP-treated young mice but not in ageing mice. Neurosci Lett 106: 282–286Google Scholar
  40. Davis P, Maloney AJR (1976): Selective loss of cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403Google Scholar
  41. DeMedio GE, Goracci G, Horrocks LA, Lazarewicz JW, Mazzari S, Poercellati G, Strosznajder J, Trovarelli G (1980): The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain. Ital J Biochem 29: 412–432Google Scholar
  42. Dimpfel W, Moller W, Mengs U (1981): Ganglioside-induced neurite formation in cultured neuroblastoma cells. In: Gangliosides in Neurological and Neuromuscular Function, Development and Repair. Rapport MM, Gorio A, eds. pp 119–134 New York: Raven PressGoogle Scholar
  43. Di-Patre PL, Casamenti F, Cenni A, Pepeu G (1989): Interaction between nerve growth factor and GM1 monosialoganglioside in preventing cortical choline acetyltransferase and high affinity choline uptake decrease after lesion of the nucleus basalis. Brain Res 480: 219–224Google Scholar
  44. Dreyfus H, Urban PF, Harth S, Preti A, Mandel P (1976): Retinal gangliosides: Composition, evolution with age. Biosynthetic and metabolic approaches. In: Ganglioside Function: Biochemical and Pharmacological Implications, Porcellati G, Ceccarelli B, Tettamanti G, eds. New York: Plenum Press, Vol 71, pp 163–188Google Scholar
  45. Enseleit WH, Domer FR, Jarrott DM, Baricos WH (1984): Cerebral phospholipid content and Na+,K+-ATPase activity during ischemia and post-ischemic perfusion in the mongolian gerbil. J Neurochem 43: 320–327.Google Scholar
  46. Erecinska M, Silver IA (1989): ATP and brain function. J Cereb Blood Flow Metab 9: 2–19Google Scholar
  47. Facci L, Leon A, Skaper SD (1990): Hypoglycemic neurotoxicity in vitro: Involvement of excitatory amino acid receptors and attenuation by monosialoganglioside GM1. Neuroscience 37: 709–716Google Scholar
  48. Farber JL, Chien KR, Mittnachi S Jr (1981): The pathogenesis of irreversible cell injury in ischemia. Am J Pathol 102: 271–281Google Scholar
  49. Fass B, Ramirez J (1984): Effects of ganglioside treatment on lesion-induced behavioral impairment and sprouting in the CNS. J Neurosci Res 12: 445–458Google Scholar
  50. Fass B, Ramirez JJ, Stein G, Mahadik SP, Karpiak SE (1987): Ganglioside induced alterations in hippocampal cholinergic enzymes and Na+,K+-ATPase after fimbria-fornix transection. J Neurosci Res 17: 45–50Google Scholar
  51. Favaron M, Alho H, Manev H, Guidotti A, Costa E (1988): Gangliosides prevent glutamate neurotoxicity in neuronal cultures. FASEB J 2 (4): A824Google Scholar
  52. Favaron M, Manev H, Vicini S, Guiditto A, Costa E (1990): Prevention of excitatory amino acid-induced neurotoxicity by natural and semisynthetic sphingoglycolipids. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed, Fidia Res Fond Symp Ser 4: 243–258Google Scholar
  53. Fazzini E, Durso R, Davoudi H, Szabo GK, Albert ML (1990): GM1 gangliosides alter acute MPTP-induced behavioral and neurochemical toxicity in mice. J Neurol Sci 99: 59–68Google Scholar
  54. Feeney DM, Sutton RL (1988): Catecholamines and recovery of function after brain damage. In: Pharmacological Approaches to the Treatment of Brain and Spinal Cord Injury, Stein D, Sable B, eds, pp 121–142 New York: Plenum PressGoogle Scholar
  55. Feeney DM, Westerberg VS (1990): Norepinephrine and brain damage: Alpha noradrenergic pharmacology alters functional recovery after cortical trauma. Can J Psychol 44: 233–252Google Scholar
  56. Ferrari G, Fabris M, Gorio A (1983): Gangliosides enhance neurite outgrowth in PC12 cells. Dev Brain Res 8: 215–221Google Scholar
  57. Fishman PH (1988): Gangliosides as cell surface receptors and transducers of biological signals. In: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects, Ledeen RW, Hogan EL, Tettamantti G, Yates AJ, and Yu RK, eds. New York: Springer-Verlag, pp 183–201Google Scholar
  58. Fishman PH, Brady RO (1976): Biosynthesis and function of gangliosides. Science 194: 906–915Google Scholar
  59. Floyd RA (1990): Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4: 2587–2597Google Scholar
  60. Freeman BA, Crapo JD (1982): Biology of disease, free radicals and tissue injury. Lab Invest 47: 412–425Google Scholar
  61. Fulginiti S, Artinian J, Cabrera R, Contreras P (1989): Response to an ethanol challenge dose on sleep time and blood alcohol level in Wistar rats prenatally exposed to ethanol during gestational day 8. Alcohol 6: 253–256Google Scholar
  62. Ginsberg MD (1990): Local metabolic responses to cerebral ischemia. Cerebrovasc Brain Metab 2: 58–93Google Scholar
  63. Giraldi C, Masi MC, Manetti M, Carabelli E, Martini A (1990): A pilot study with monosialoganglioside GM1 on acute cerebral ischemia. Acta Neurol (Napoli) 12: 214–221Google Scholar
  64. Gorio A (1986): Ganglioside enhancement of neuronal differentiation, plasticity and repair. CRC Crit Rev Clin Neurobiol 2: 241–296Google Scholar
  65. Greenberg JH, Reivich M, Urbanics R, Tanaka K, Dora E, Toffano G (1986): The effect of GM1 on cerebral metabolism microcirculation and histology in focal ischemia. In: Gangliosides and Neuronal Plasticity, Tettamanti G, Ledeen RW, Sandhoff K, Nagai Y, and Toffano G, eds. New York, Springer-Verlag pp 397–406Google Scholar
  66. Greenberg JH, Komatsumoto S, Dora E, Tanaka W, Hickey W, Toffano G, Reivich M (1987): The effect of GM1 in focal ischemia in the cat. J. Cereb. Blood Flow Metab 17: S180Google Scholar
  67. Gupta M, Schwarz J, Chen XL, Roisen FJ (1990): Gangliosides prevent MPTP toxicity in mice: An immunocytochemical study. Brain Res 527: 330–334Google Scholar
  68. Hadjiconstantinou M, Rosetti ZL, Paxton RC, Neff NM (1986): Administration of GMi ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology 25: 1075–1077Google Scholar
  69. Hakomori S-J (1981): Glycoshingolipids in cellular interaction, differentiation, and oncognesis. Annu Rev Biochem 50: 733–764Google Scholar
  70. Hall DE, Braughler JM (1989): Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radical Biol Med 16: 303–313Google Scholar
  71. Hall DE, Pazara KE, Braughler JM (1988): 21–Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 18: 997–1002Google Scholar
  72. Halliwell B (1989): Oxydants and the central nervous system: Some fundamental questions. Acta Neurol Scand 126: 23–33Google Scholar
  73. Harris RA, Shroeder F (1981): Ethanol and the physical properties of brain membranes: Fluorescence studies. Mol Pharmacol 20: 128–137Google Scholar
  74. Harris WE, Stahl WL (1985): Protein-lipid interactions of the Na +, K+-ATPase. In: The Sodium Pump, Glynn I, Ellory C, eds. pp 73–76 Cambridge: Company of Biologists Ltd.Google Scholar
  75. Hauw JJ, Fenelon S, Boutry J-M, Nagai Y, Escourolle R (1981): Effect of brain gangliosides on neurite growth in guinea pig spinal ganglia tissue cultures and on fibroblast cell cultures. In: Gangliosides in Neurological and Neuromuscular Function, Development and Repair, Rapport MM, Gorio A, eds. pp 171–175 New York: Raven PressGoogle Scholar
  76. Hayakawa T, Waltz AG (1975): Immediate effect of cerebral ischemia: Evolution and resolution of neurological deficits after experimental occlusion of one middle cerebral artery in conscious cats. Stroke 6: 321–327Google Scholar
  77. Hefti F (1986): Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 6: 2155–2162Google Scholar
  78. Hernandez N, Ortiz A, Durkin M, Barkai AI, Mahadik SP, Karpiak SE (1990): Autoradiographic analysis of reduced 45Ca2+ loading in cortical ischemia with GM1 ganglioside treatment. Soc Neurosci 16: 942Google Scholar
  79. Hungund BL, Gokhale V, Ortiz A, Karpiak SE, Mahadik SP (1990b): Membrane fatty acids in primary and peri-ischemic cortical tissue following acute GM1 ganglioside treatment. Soc Neurosci 16: 942.Google Scholar
  80. Hollman M, Seifert W (1986): Gangliosides modulate glutamate receptor binding in rat brain synaptic plasma membranes. Neurosci Lett 65: 133–138Google Scholar
  81. Hungund BL, Mahadik SP (1981): Topographic studies of gangliosides of intact synaptosomes from rat brain cortex. Neurochem Res 6: 183–191Google Scholar
  82. Hungund BL, Reddy MV, Bharucha VA, Mahadik SP (1990a): Monosialogangliosides (GM1 and AGF2) reduce ethanol intoxication: Sleep time, mortality and cerebral cortical Na+,K+- ATPase. Drug Dev Res 19: 443–451Google Scholar
  83. Hungund BL, Gokhale VB, Cooper TB, Mahadik SP (1991): Ganglioside GM1 pretreatment protects the prenatal ethanol effects. Drug Develop Res 24: 261–267Google Scholar
  84. Ito U, Spatz M, Walker JT, Klatzo I (1975): Experimental cerebral ischemia in mongolian gerbils. Acta Neuropathol 32: 209–223Google Scholar
  85. Ito U, Go KG, Walker JT, Spatz M, Klatzo I (1976): Experimental cerebral ischemia in Mongolian gerbils. III. Behavior of the blood-brain barrier. Acta Neuropathol 34: 1–6Google Scholar
  86. Jackson GR, Apffel L, Werrbach-Perez K, Perez-Polo JR (1990): Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J Neurosci Res 25: 360–368Google Scholar
  87. Jonsson G, Gorio A, Hallman H, Janigro D, Kojima H, Luthman J, Zanoni R (1984): Effects of GM1 ganglioside on developing and mature serotonin and noradrenaline neurons lesioned by selective neurotoxins. J Neurosci Res 12: 459–475Google Scholar
  88. Kanda S, Inoue K, Nojima S, Utaumi H, Wiegandt H (1982): Incorporation of spin-labeled ganglioside analogues into cell and liposomal membranes. JBiochem 91: 1707–1717Google Scholar
  89. Karpiak SE (1983): Ganglioside treatment improves recovery of alteration behavior after unilateral entorhinal cortical lesion. Exp Neurol 81: 330–339Google Scholar
  90. Karpiak SE (1984): Recovery of function after CNS damage enhanced by ganglio-sides. In Ganglioside Structure, Function and Biomedical Potential, Ledeen R, Yu R, Rapport MM, Susuki, eds. New York: Plenum Press, pp 489–494Google Scholar
  91. Karpiak SE, Mahadik SP (1984): Reduction of cerebral edema with GM1 ganglio-side. J Neurosci Res 12: 485–492Google Scholar
  92. Karpiak SE, Vilim F, Mahadik SP (1984): Gangliosides accelerate neonatal learning and levels of cortical acetylcholin esterases. Dev Neurosci 6: 127–135Google Scholar
  93. Karpiak S, Li Y-S, Mahadik SP (1986a): GM1 and AGF2 ganglioside reduce mortality from ischemia: Protection of membrane integrity. Clin Neuropharmacol 9: 338–340Google Scholar
  94. Karpiak SE, Li Y-S, Mahadik SP (1986b): Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: Protection of membrane function. Stroke 18: 184–187Google Scholar
  95. Karpiak SE, Tagliavia A, Wakade CG (1989): Animal models for the study of drugs in ischemic stroke. Ann Rev Pharmacol Toxico129:403–414Google Scholar
  96. Karpiak SE, Mahadik SP, Wakade CG (1990): Ganglioside reduction of ischemic injury. CRC Crit Rev Neurobiol 5: 221–237Google Scholar
  97. Karpiak SE, Wakade CG, Tagliavia A, Mahadik SP (1991): Temporal changes in edema, Na+, K+, and Ca++ in focal cortical stroke: GM1 ganglioside reduces ischemic injury. J Neurosci Res 30: 512–520.Google Scholar
  98. Klee CB, Guerini D, Krink MH, De Camilli P, Solimana M (1990): Calcineurin: A major Ca“ /calmodulin-regulated protein phosphatase in brain. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed. Fidia Res Fond Symp Ser 4: 95–108.Google Scholar
  99. Klemm WR, Foster DM (1986): Alcohol, in a single pharmacological dose, decreases brain gangliosides. Life Sci 39: 897–902Google Scholar
  100. Klemm WR, Boyles R, Mathew J, Cherian L (1988): Gangliosides or sialic acid antagonize ethanol intoxication. Life Sci 43: 1837–1843Google Scholar
  101. Kojima H, Gorio A, Janigro D, Jonsson G (1984): GM1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6–OHDA. Neuroscience 13: 1011–1022Google Scholar
  102. Kolb B, Whishaw FA (1985): An observer’s view of locomotor asymmetry in rat. Neurobehav Toxicol Terato17:71–78Google Scholar
  103. Kolb B, Sutherland RJ, Whishaw FA (1983): A comparison of the contribution of the frontal and parietal association cortex to spacial localization in rat. Behav Neurosci 97: 13–27Google Scholar
  104. Komatsumoto S, Greenberg JH, Hickey WF, Reivich M (1988): Effect of ganglio-side GM 1 on neurologic function, electroencephalogram amplitude, and histology in chronic middle cerebral artery occlusion in cats. Stroke 19: 1027–1035Google Scholar
  105. Kromer LF (1988): Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216Google Scholar
  106. Laev H, Mahadik SP (1989): Topography of monosialoganglioside (GM1) in rat brain using monoclonal antibodies. Neurosci Lett 102: 7–14Google Scholar
  107. Ledeen RW (1978): Ganglioside structure and distribution: Are they localized at the nerve ending? J Supramol Struct 8: 1–17Google Scholar
  108. Ledeen RW (1983): Ganglioside. In: Handbook of Neurochemistry, Lajtha A, ed New York: Plenum Press Vol 3, pp 41–90Google Scholar
  109. Ledeen RW, Yu RK (1976): Gangliosides of the nervous system. In: Ganglioside Methodology, Witting LL, ed. pp 187–214 Champaign, Illinois: American Oil Chemists Soc.Google Scholar
  110. Ledeen RW, Yu RK (1982): Gangliosides: Structure, isolation and analysis. In: Methods in Enzymology, Ginsburg V, ed, Vol 83, pp 139–191 New York: Academic PressGoogle Scholar
  111. Ledeen RW, Yu RK, Eng LF (1973): Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as a major component. J Neurochem 21: 829–839Google Scholar
  112. Leon A, Facci L, Benvegnu D, Toffano G (1981): Activation of Na+, K+-ATPase by nanomolar concentrations of GM1 ganglioside. JNeurochem 37: 350–357Google Scholar
  113. Leon A, Facci L, Benvegnu D, Toffano G (1982): Morphological and biochemical effects of gangliosides in neuroblastoma cells. Dey Neurosci 5: 108–114Google Scholar
  114. Leon A, Dal Toso R, Presti D, Benvegnu D, Facci L, Kirschner G, Tettamanti G, Toffano G (1988): Development and survival of neurons in dissociated fetal mesencephalic serum-free cell cultures: II. Modulatory effects of gangliosides. J Neurosci 8: 746–753Google Scholar
  115. Leon A, Lipartiti M, Seren MS, Lazzaro A, Mazzari S, Koga T, Toffano G, Skaper SD (1990): Hypoxic-ischemic damage and the neuroprotective effects of GM1 ganglioside. Stroke 21: 95–97Google Scholar
  116. Li Y-S, Mahadik SP, Rapport MM, Karpiak SE (1986): Acute effects of GM1 ganglioside: Reduction in both behavioral asymmetry and loss of Na+,K+ATPase after nigrostriatal transection. Brain Res 377: 292–297Google Scholar
  117. Liotti ES, Bodo M, Menghini AR, Guerrieri P, Mariucci G, Bruschelli G (1989): Different behavior of normal and neoplastic cells cultured in vitro in the presence of catalase and superoxide dismutase. Int J Cancer 40: 354–357Google Scholar
  118. Llinas R, Sugimori M (1990): Intracellular calcium concentration changes during cell death. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed. Fidia Res Fond Symp Ser 4: 1–10Google Scholar
  119. Mackewicz J, Gershon S (1964): An experimental study of the neuropathological and toxicological effects of chlorpromazine and reserpine. J Neuropsychiatry 5: 159–169Google Scholar
  120. Magal E, Louis JC, Aquilera J, Yaven E (1990): Gangliosides prevent ischemia-induced down-regulation of protein kinase C in fetal rat brain. J Neurochem 55: 2126–2131Google Scholar
  121. Mahadik SP, Karpiak SE (1986): GM1 ganglioside accelerates neonatal development: Increased neurochemical maturation. Neurotoxicology 7: 155–162Google Scholar
  122. Mahadik SP, Karpiak SE (1988): Gangliosides in treatment of neural injury and disease. Drug Dey Res 15: 337–360Google Scholar
  123. Mahadik SP, Korenovsky A, Karpiak SE (1985a): GM1 ganglioside alters levels of AChE in rat brain regions. Abstr Int Congr Biochem Amsterdam P709, 272Google Scholar
  124. Mahadik SP, Korenovsky A, Karpiak SE (1985b): GM1 ganglioside alters Na’,K+ATPase levels in rat CNS regions. Trans Am Soc Neurochem 16: 231Google Scholar
  125. Mahadik SP, Vilim F, Korenovsky A, Karpiak SE (1988a): GM1 ganglioside protects nucleus basalis from excitotoxin damage: Reduced cortical cholinergic losses and animal mortality. J Neurosci Res 20: 479–483Google Scholar
  126. Mahadik SP, Korenovsky A, Laev H, Karpiak SE (1988b): Cholinergic dysfunction after haloperidol treatment: Protection by ganglioside GM1. Psychopharmacology 96 (suppl): 319Google Scholar
  127. Mahadik SP, Hawver DB, Hungund BL, Li Y-S, Karpiak SE (1989): GM1 ganglioside treatment protects changes in membrane fatty acids and properties of Na+,K+-ATPase and Mg++-ATPase. JNeurosci Res 24: 402–412Google Scholar
  128. Mahadik SP, Murthy J, Ortiz A, Karpiak SE (1990): GM1 ganglioside treatment maintains capacity of ischemic tissue to defend against free radical damage. Soc Neurosci 16: 942Google Scholar
  129. Mahadik SP, Bharucha VA, Stadlin A, Ortiz A, Karpiak SE (1992): Loss and recovery of a+ and a isozymes of (Na’ + K+)-ATPase in cortical focal ischemia: GM 1 ganglioside protects membrane structure and function. J Neurosci Res in pressGoogle Scholar
  130. Mammoli B, Brunner G, Mader R, Schanda H (1980): Effects of cerebral gangliosides in the alcoholic neuropathies. Acta Neurol (Napoli) 19: 320–326Google Scholar
  131. Manev H, Favaron M, Guidotti A, Costa E (1989): Delayed increase of Ca’ influx elicited by glutamate: Role in neuronal death. Mol Pharmacol 36: 106–112Google Scholar
  132. Manev H, Favaron M, DeErausquin GA, Guidotti A, Brooker G, Costa E (1990a): Destabilization of ionized Ca++ homeostasis in excitatory amino acid toxicity: Antagonism by glycosphingolipids. Cell Biol 14: 3–14Google Scholar
  133. Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990b): Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: Protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 252: 419–427Google Scholar
  134. Manev H, Costa E, Wroblevsky JT, Guidotti A (1990c): Abusive stimulation of excitatory amino acid receptors: A strategy to limit neurotoxicity. FASEB J 4: 2789–2797Google Scholar
  135. Matta SG, Yorke G, Roisen FJ (1986): Neuritogenic and metabolic effects of individual gangliosides and their interaction with nerve growth factor in cultures of neuroblastoma and pheochromocytoma. Dev Brain Res 27: 243–252Google Scholar
  136. McDaniel W, Thomas R (1978): Temporal and parietal association cortex lesions and spatial and black and white reversal learning in the rat. Physiol Psychol 6: 300–305Google Scholar
  137. Meldrum B (1990): Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovase Brain Metab Rev 2: 27–57Google Scholar
  138. Michaelis EK (1990): Fetal alcohol exposure: Cellular toxicity and molecular events in toxicity. Alcohol Clin Exp Res 14: 819–826Google Scholar
  139. Miller RJ (1988): Calcium signalling in neurons. Trends Neurosci 11: 415–419Google Scholar
  140. Morgan JI, Seifert W (1979): Growth factors and gangliosides: A possible new perspective in neuronal growth control. J Supramol Struct 10: 111–124Google Scholar
  141. Morgan IG, Zanetta JP, Breckenridge WC, Vincendon G, Gombos G (1973): Chemical structure of synaptic membranes. Brain Res 62: 405–411Google Scholar
  142. Moss J, Fishman PH, Manganiello VC, Vaughan M, Brady RD (1976): Functional incorporation of ganglioside into intact cells: Induction of choleragen responsiveness. Proc Natl Acad Sci USA 73: 1034–1037Google Scholar
  143. Obata K, Oide M, Handa S (1977): Effects of glycolipids on in vitro development of neuromuscular junction. Nature 266: 369–371Google Scholar
  144. Oderfeld-Nowak B, Skup M, Ulas J, Jezierska M, Gradkowska M, Zaremba M (1984): Effect of GM1 ganglioside treatment on postlesion response of cholinergic enzymes in rat hippocampus after various partial differentiations. JNeurosci Res 12: 409–420Google Scholar
  145. Ogura K, Handa S (1988): Metabolism of exogenous gangliosides GM1 and chemically modified GM1 in mice. J Biochem 104: 87–92Google Scholar
  146. O’Keefe E, Cuatrecasas P (1977): Persistence of exogenous, inserted ganglioside GM1 on the cell surface of cultured cells. Life Sci 21: 1649–1654Google Scholar
  147. Onodera H, Araki T, Kogure K (1988): Protein kinase C activity in the rat hippocampus after forebrain ischemia: Autoradiographic analysis by 13H]phorbol 12, 13–dibutyrate. Brain Res 481: 1–7Google Scholar
  148. Ortiz A, MacDonall S, Wakade CG, Karpiak SE (1990): GM1 ganglioside reduces cognitive dysfunction after focal cortical ischemia. Pharmacol Biochem Behav 37: 679–684Google Scholar
  149. Pedata F, Giovannelli L, Pepeu G (1984): Ganglioside facilitates the recovery of high-affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis. J Neurosci Res 12: 421–428Google Scholar
  150. Peselow ED, Irons S, Rostrosen J, Teresa M, Alonso BFA, Dorsey F (1989): GM1 ganglioside as a potential treatment in tardive dyskinesia. Psychopharmacol Bull 25: 277–280Google Scholar
  151. Petroni A, Bertazzo A, Sarti S, Galli C (1989): Accumulation of arachidonic acid cyclo-and lipoxygenase products in rat brain during ischemia and reperfusion: Effects of treatment with GM1–lactone. J Neurochem 53: 747–752Google Scholar
  152. Plum F (1983): What causes cerebral infarction in brain ischemic injury? Neurology 33: 222–233Google Scholar
  153. Prasad VV (1989): Maternal alcohol consumption and undernutrition in the rat: Effects on gangliosides and their catabolizing enzymes in the CNS of the new born. Neurochem Res 14: 1081–1088Google Scholar
  154. Pulsinelli WA, Brierly JB (1979): A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272Google Scholar
  155. Rahmann H (1983): Functional implication of gangliosides in synaptic transmission. Neurochem Int 5: 539–547Google Scholar
  156. Raichle MF (1983): The pathophysiology of brain ischemia. Ann Neurol 13: 2–10Google Scholar
  157. Ramirez J, Fass B, Mahadik SP, Karpiak SE (1987a): Ganglioside treatment reduces hyperactivity following bilateral entorhinal cortical lesions. Brain Res 414: 85–90Google Scholar
  158. Ramirez J, Fass B, Karpiak SE, Steward O (1987b): Ganglioside treatments reduce locomotor hyperactivity after bilateral lesions of the entorhinal cortex. Neurosci Lett 75: 283–287Google Scholar
  159. Rappaport ZH, Young W, Flamm ES (1987): Regional brain calcium changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 18: 760–764Google Scholar
  160. Rapport MM, Gorio A (1981): Gangliosides in Neurological and Neuromuscular Function, Development, and Repair. New York: Raven PressGoogle Scholar
  161. Robinson RG, Coyle JT (1980): The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat. Brain Res 188: 63–78Google Scholar
  162. Robinson RG, Shoemaker WJ, Schlumf M, Valk T, Bloom FE (1975): Experimental cerebral infarction in rat brain: Effect on catecholamines and behavior. Nature 255: 332–334Google Scholar
  163. Roisen FJ, Bartfeld H, Nagele R, Yorke F (1981): Ganglioside stimulation of axonal sprouting in vitro. Science 214: 577–578Google Scholar
  164. Roisen FJ, von Hoesselin H, Mahadik SP, Rapport MM, Yorke G (1987): Modulation of in vitro neurotrophic interaction by ganglioside. Neurosci Abstr 13: 1015Google Scholar
  165. Rothman SM (1985): The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5: 1483–1489Google Scholar
  166. Rothman SM, Olney JW (1986): Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann Neurol 19: 105–111Google Scholar
  167. Rybak S, Ginzburg I, Yavin E (1983): Gangliosides stimulate neurite outgrowth and induce tubulin mRNA accumulation in neural cells. Biochem Biophys Res Commun 116: 974–980Google Scholar
  168. Sabel B (1985): Treating brain injury with gangliosides. Intergrative Psychiatry 3: 185–192Google Scholar
  169. Sabel BA, Dunbar GL, Stein DG (1984a): Gangliosides minimize behavioral deficits and enhance structural repair after brain injury. J Neurosci Res 12: 429–443Google Scholar
  170. Sabel BA, Slavin MD, Stein DG (1984b): GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. Science 225: 340–342Google Scholar
  171. Sabel BA, Dunbar GL, Butler WM, Stein DG (1984c): GM1 ganglioside stimulates neuronal reorganisation and reduces rotational asymmetry after hemitransections of the nigro-striatal pathway. Exp Brain Res 60: 27–37Google Scholar
  172. Sandermann H Jr (1978): Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515: 209–237Google Scholar
  173. Savoini G, Fuxe K, Agnati LF, Calza L, Moroni F, Lombardi MG, Goldstein M, Toffano G (1985): Effect of GM1 ganglioside on the recovery of dopaminergic nigro-striatal neurons after lesions. In: Central Nervous System Plasticity and Repair, Bignami A, Bloom FE, Bolis CL, Adeloye A, eds. New York: Raven Press, pp 75–86Google Scholar
  174. Scapagnini U, Catalano GB (1980): Cranassial Fidia Report from Instituto di Farmacologia dell’Universita degli studi di CataniaGoogle Scholar
  175. Schengrund CL (1990): The role(s) of gangliosides in neural differentiation and repair: A perspective. Brain Res Bull 24: 131–141Google Scholar
  176. Schwartz JP, Mrsulja BB, Mrsulja BJ, Passoneau JV, Klatzo I (1976): Alterations of cyclic nuclotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex. J Neurochem 27: 101–107Google Scholar
  177. Schwartz M, Spirman N (1982): Sprouting from chick embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity purified anti-GM1 antibody. Proc Natl Acad Sci USA 79: 6080–6083Google Scholar
  178. Seyfried TN, Glasser GH, Yu RK (1979): Genetic variability for regional brain gangliosides in five strains of young mice. Biochem Genet 17: 43–55Google Scholar
  179. Shinitzky M, Barenholz Y (1978): Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515: 367–394Google Scholar
  180. Siesjö BK (1981): Cell damage in the brain: A speculative hypothesis. J Cereb Blood Flow Metab 1:155–186 Google Scholar
  181. Siesjö BK (1988): Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522: 638–661Google Scholar
  182. Siesjö BK, Bengtsson F (1989): Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia, and speading depression: A unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140Google Scholar
  183. Siman, R. (1990): Role of calpain I in excitatory amino acid-induced degenerative structural changes. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed. Fidia Res Fond Symp Ser 4: 145–161Google Scholar
  184. Skaper SD, Katoh-Semba R, Varon S (1985): GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selective culture conditions. Dev Brain Res 23: 19–26Google Scholar
  185. Skaper SD, Leon A, Toffano G (1989): Ganglioside function in the development and repair of the nervous system: From basic research to clinical application. Mol Neurobiol 3: 173–199Google Scholar
  186. Spoerri PE (1983): Effects of gangliosides on the in vitro development of neuro-blastoma cells: An ultrastructural study. Int J Dev Neurosci 6: 383–391Google Scholar
  187. Spoerri PE, Rapport MM, Mahadik SP, Roisen FJ (1988): Inhibition of conditioned media-mediated neuritogenesis of sensory ganglia by monoclonal antibodies to GM1 ganglioside. Dev Brain Res 41: 71–77Google Scholar
  188. Stein DG (1990): Some functional consequences of chronic GM1 ganglioside administration in brain damaged rats. Acta Biologica Experimentalis Google Scholar
  189. Stein DG (1991): Fetal brain tissue grafting as therapy for brain dysfunction: Unanswered questions, unknown factors and practical concerns. J Neurosurg Anesthesiol in press Google Scholar
  190. Suzuki Y, Hirabayashi Y, Sagami F, Matsumoto M (1988): Gangliosides in the blood plasma: Levels of ganglio-series gangliosides in the plasma after administration of brain gangliosides. Biochim Biophys Acta 962: 277–281Google Scholar
  191. Svennerholm L (1980): Gangliosides and synaptic transmission. In: Structure and Function of Gangliosides, ed. by, Svennerholm L, Mandel P, Dreyfus H, Urban P-F, eds. New York: Plenum Press, pp 533–544Google Scholar
  192. Svennerholm L (1990): Gangliosides and nerve growth factors in Alzheimer’s disease. Acta Neurol Scand Suppl 129: 21–22Google Scholar
  193. Sweadner K, Goldin SM (1980): Active transport of sodium and potassium ions: Mechanism, function and regulation. New Engl J Med 302: 777–783Google Scholar
  194. Tamura A, Graham DI, McCulloch J, Teasdale JM (1981): Focal cerebral ischemia in the rat. I. Description of technique and early neurological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–60Google Scholar
  195. Tanaka K, Dora E, Urbanics R, Greenberg J, Toffano G, Reivich M (1986): Effect of the ganglioside GM1 on cerebral metabolism, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats. Stroke 17: 1170–1178Google Scholar
  196. Tanaka R, Teruya A (1973): Lipid dependence of activity-temperature relationship of (Na+,K+)-activated ATPase. Biochim Biophys Acta 323: 584–591Google Scholar
  197. Tettamanti G (1988): Towards the understanding of the physiological role of gangliosides. In New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects, Ledeen RW, Hogan EL, Tettamantti G, Yates AJ, Yu RK, eds. New York: Springer-Verlag, pp 625–646Google Scholar
  198. Tettamanti G, Ledeen RW, Nagai Y, Sandhoff K, Toffano G (1987): Neuronal Plasticity and Gangliosides. Berlin: Springer-VerlagGoogle Scholar
  199. Thomas PD, Brewer GJ (1990): Gangliosides and synaptic transmission. Biochim Biophys Acta 19: 277–289Google Scholar
  200. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1983): GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261: 163–166Google Scholar
  201. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1984): Chronic GM 1 ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat. Brain Res 296: 233–239Google Scholar
  202. Tominaga T, Ohnishi ST (1989): Interrelationship of brain edema, motor deficits, and memory impairment in rats exposed to focal ischemia. Stroke 20: 513–518Google Scholar
  203. Urban PF, Harth S, Freysz L, Dreyfus H (1980): Brain and retinal ganglioside composition from different species determined by TLC and HPTLC. In: Structure and Function of Gangliosides, Svennerholm L, Mandel P, Dreyfus H, Urban P-F, eds. Vol 125, pp 149–157 New York: Plenum PressGoogle Scholar
  204. Vaccarino F, Guidotti A, Costa E (1987): Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc Natl Acad Sci USA 34: 8707–8711Google Scholar
  205. Vanella A, Avola R, Condorelli DF, Campisi A, Costa A, Giuffrida Stella AM, Perez-Polo JR (1989): Antioxidant enzymatic activities and resistance to oxidative stress in primary and subcultured rat astroglial cells. Int Dev Neurosci 7: 233–241Google Scholar
  206. Vanier MT, Holm M, Ohman R, Svennerholm L (1971): Developmental profiles of gangliosides in human and rat brain. JNeurochem 18: 581–592Google Scholar
  207. Vyskocil F, DiGregorio F, Gorio A (1985): The facilitating effect of gangliosides on the electrogenic (Na+/K+) pump and the resistance of the membrane potential to hypoxia in neuromuscular preparation. Pflugers Arch 403: 1–6Google Scholar
  208. Westphal S, Beyer K, Kielstein V, Schenk H (1989): Abnormal gangliosides in the plasma of alcoholics. Drug Alcohol Depend. 24: 251–253Google Scholar
  209. White BC, Winegar CD, Wilson RF, Hoener PJ, Tromblen JH Jr (1984): Possible role of calcium blockers in cerebral resuscitation: A review of the literature and synthesis for future studies. Crit Care Med 11: 202–207Google Scholar
  210. Whittemore SR, Nieto-Sampedro M, Needels DL, Cotman CW (1985): Neurotrophic factors for mammalian brain neurons: Injury induction in neonatal, adult and aged rat brain. Dey Brain Res 20: 169–178Google Scholar
  211. Wiegandt H (1987): Fundamentals of ganglioside structure. In: Gangliosides and Modulation of Neuronal Functions, Rahamann H, ed. Berlin: Springer-Verlag, pp 37–47Google Scholar
  212. Williams LR, Varon S, Peterson GM, Victorin K, Fischer W, Bjorklund A, Gage FH (1986): Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proc Natl Acad Sci USA 83: 9231–9235Google Scholar
  213. Wojcik M, Ulas J, Oderfeld-Nowak B (1982): The stimulating effect of ganglioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions. Neuroscience 7: 495–499Google Scholar
  214. Wroblewsky JT, Danysz W (1989): Modulation of glutamate receptors: Molecular mechanisms and functional implications. Annu Rev Pharmacol Toxicol 29: 441–474Google Scholar
  215. Yamakawa T, Nagai Y (1978): Glycolipids at the cell surface and their biological function. Trends Biol Sci 3: 128–131Google Scholar
  216. Yoshida S, Ikeda M, Busto R, Santiso M, Martinez E, Ginsberg MD (1980): Cerebral phosphoinositide, triacylglycerol, and energy metabolism in reversible ischemia: Origin and fate of free fatty acids. J Neurochem 47: 744–757Google Scholar
  217. Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, Ueta N (1986): Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: Lipid peroxidation as a possible cause of post-ischemic injury. J Neurochem 53: 323–331Google Scholar
  218. Young W, Rappaport ZH, Chalif DJ, Flamm ES (1987): Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 18: 751–759Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Sahebarao P. Mahadik

There are no affiliations available

Personalised recommendations