Sums, Trimmed Sums and Extremes pp 269-283 | Cite as

# A Note on Weighted Approximations to the Uniform Empirical and Quantile Processes

## Abstract

Recently, M. Csörgő, S. Csörgő, Horváth and Mason (1986a) obtained a weighted approximation to the uniform empirical and quantile processes by a sequence of Brownian bridges. The purpose of this note is to give a short and elementary proof of their weighted approximation to the uniform quantile process. Their corresponding weighted approximation to the uniform empirical process follows in a direct fashion from that of the imiform quantile process. The present proof, as was the former, is based on the Komlós, Major and Tusnády (1976) strong approximation to the partial sum process. It is shown, however, that almost the same weighted approximation to the uniform empirical and quantile processes can be derived from the older Skorokhod (1965) embedding. This alternate weighted approximation, obtained via the Skorokhod embedding, is likely to be sufficient for nearly all applications of the weighted approximation methodology and has the advantage that its proof is more suitable for instructional purposes.

## Keywords

Asymptotic Distribution Wiener Process Weighted Approximation Strong Approximation Brownian Bridge## Preview

Unable to display preview. Download preview PDF.

## References

- [1]BREIMAN, L. (1967). On the tail behavior of sums of independent random variables.
*Z. Wahrscfi. verw. Gebiete***9**, 20–25.MathSciNetMATHCrossRefGoogle Scholar - [2]CHIBISOV, D. (1965). Some theorems on the limiting behavior of empirical distribution functions.
*Selected Translations Math. Statist. Probability*6, 147–156.Google Scholar - [3]CSÖRGÖ, M.
*Quantile Processes with Statistical Applications*. Philadelphia: Regional Conference Series on Appl. Math. SIAM, 1983.CrossRefGoogle Scholar - [4]CSÖRGÖ, M., CSÖRGÖ, S., HORVÄTH, L. and MASON, D. (1986a). Weighted empirical and quantile processes.
*Ann. Probability*14, 31–85.CrossRefGoogle Scholar - [5]CSÖRGÖ, M., CSÖRGÖ, S., HORVÄTH, L. and MASON, D. (1986b). Normal and stable convergence of integral functions of the empirical distribution function.
*Ann. Probability***14**, 86–118.CrossRefGoogle Scholar - [6]CSÖRGÖ, S. and MASON, D. (1989). Bootstrapping empirical functions.
*Ann. Statist***17**, 1447–1471.MathSciNetCrossRefGoogle Scholar - [7]CSÖRGÖ, M. and MASON, D. (1985). On the asymptotic distribution of weighted imiform empirical and quantile processes in the middle and on the tails.
*Stochastic Process. Appl*.**21**, 119–132.MathSciNetCrossRefGoogle Scholar - [8]CSÖRGÖ, M. and REVESZ, P. (1978). Strong approximations of the quantile process.
*Ann. Statist*.**6**, 882–894.MathSciNetCrossRefGoogle Scholar - [9]CSÖRGÖ, S., DEHEUVELS, P. and MASON, D. (1985). Kernel estimates of the tail index of a distribution.
*Ann. Statist*.**13**, 1050–1077.MathSciNetCrossRefGoogle Scholar - [10]CSÖRGÖ, S., HAEUSLER, E. and MASON, D. (1988). The asymptotic distribution of trimmed sums.
**16**, 672–699.Google Scholar - [11]CSÖRGÖ, S., HORVÄTH, L. and MASON, D. (1986). What portion of the sample makes a partial simi asymptotically stable or normal?
*Probab. Theory Related Fields*.**72**, 1–16.CrossRefGoogle Scholar - [12]CSÖRGÖ, S. and MASON, D. (1985). Central limit theorems for sums of extreme values.
*Math. Proc. Cambridge Phil. Soc*.**98**, 547–558.CrossRefGoogle Scholar - [13]CSÖRGÖ, S. and MASON, D. ri986). The asymptotic distribution of sums of extreme values from a regularly varying distribution.
*Ann. Probability***14**, 974–983.Google Scholar - [14]EICKER, F. (1979). The asymptotic distribution of the suprema of the standardized empirical process.
*Ann. Statist*.**7**, 116–138.MathSciNetMATHCrossRefGoogle Scholar - [15]JAESCHKE, D. (1979). The asymptotic distribution of the supremum of the standardized empirical distribution on subintervals.
*Ann. Statist*.**7**, 108–115.MathSciNetMATHCrossRefGoogle Scholar - [16]KOMLÖS, J., MAJOR, P. and TUSNADY, G. (1975). An approximation of partial simis of rv’s and the sample df, I.
*Z. Wahrsch, verw. Gebiete***32**, 111–131.CrossRefGoogle Scholar - [17]KOMLÖS, J., MAJOR, P. and TUSNADY, G. (1976). An approximation of partial simis of rv’s and the sample df, II.
*Z. Wahrschj verw. Gebiete***34**, 111–131.Google Scholar - MASON, D. (1985). The asymptotic distribution of generalized Renyi statistics.
*Acta. Sci. Math. (Szeged)***48**, 315–323.MathSciNetMATHGoogle Scholar - [18]MASON, D. and VAN ZWET, W. R. (1987). A refinement of the KMT inequality for the uniform empirical process.
*Ann. Probability***15**, 871–884.MATHCrossRefGoogle Scholar - [19]O’REILLY, N. (1974). On the weak convergence of empirical processes in sup- norm metrics.
*Ann. Probability***2**, 642–651.MathSciNetMATHCrossRefGoogle Scholar - [20]SKOROKHOD, A. V.
*Studies in the Theory of Random Processes*. Reading, Mass: Addison-Wesley, 1965.MATHGoogle Scholar

## Additional References For Addendum

- [21]CSÖRGÖ, M. and HORVÄTH, L. (1986). Approximations of weighted empir-Lpproxin ical and quantile processes.
*Statistics & Probability Letters***4**, 275–280.MathSciNetCrossRefGoogle Scholar - [22]CSÖRGÖ, M. and REVESZ, P. (1979). How big are the increments of a Wiener process?
*Ann. Probability***7**, 731–737.CrossRefGoogle Scholar - [23]EINMAHL, J. H. J. and MASON, D. (1988). Strong Hmit theorems for weighted quantile processes.
*Ann. Probability***16**, 1623–1643.MathSciNetMATHCrossRefGoogle Scholar - [24]MARCUS, M.B. and ZINN, J. (1984). The bounded law of the iterated logarithm for the weighted empirical distribution process in the non-i.i.d. case.
*Probability***14**, 335–360.MathSciNetCrossRefGoogle Scholar - [25]MASON, D. (1983). The asymptotic distribution of weighted empirical distribution functions.
*Stochastic Process. Appl*.**15**, 99–109.MathSciNetMATHCrossRefGoogle Scholar - [25]MASON, D., SHORACK, G. and WELLNER, J. A. (1983). Strong limit theorems for oscillation moduli of the uniform empirical process.
*Z. Wahrsch. verw. Gebiete***65**, 83–97.MathSciNetMATHCrossRefGoogle Scholar - [25]WELLNER, J. A. (1978). Limit theorems for the ratio of the empirical distribution function to the true distribution function.
*Z. Wahrsch. verw. Gebiete***45**, 73–88.MathSciNetMATHCrossRefGoogle Scholar