On the Asymptotic Behavior of Sums of Order Statistics from a Distribution with a Slowly Varying Upper Tail

  • Erich Haeusler
  • David M. Mason
Part of the Progress in Probability book series (PRPR, volume 23)


Let (X n)n≥1 be a sequence of independent non-negative random variables from a common distribution function F with a regiilarly varying upper tail. A number of results are presented on the stability, asymptotic distribution and law of the iterated logarithm for trimmed sums formed by deleting a number of the upper extreme values from the partial sum X 1 +...+X n at each stage n. The methods of proof are entirely based on quantile function techniques. This paper should provide the reader with a good introduction to some of the possibilities and the scope of this methodology.


Asymptotic Distribution Empirical Process Iterate Logarithm Empirical Distribution Function Common Distribution Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BINGHAM, N.H., GOLDIE, C.M. and TEUGELS, J.L. (1987). Regular Variation. Cambridge University Press, Cambridge.MATHGoogle Scholar
  2. [2]
    CSAKI, E. (1977). The law of the iterated logarithm for normalized empirical distribution function. Z. Wahrsch. Verw, Gebiete 38 147–167.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    CSÖRGÖ, S., HAEUSLER, E. and MASON, D.M. (1988a). A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables. Adv. in Appl. Math. 9 259–333.MathSciNetCrossRefGoogle Scholar
  4. [4]
    CSÖRGÖ, S., HAEUSLER, E. and MASON, D.M. (1988b). Asymptotic distribution of trimmed sums. Ann. Probab. 16 672–699.MathSciNetCrossRefGoogle Scholar
  5. [5]
    DARLING, D.A. (1952). The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73 95–107.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    EINMAHL, J.H.J, and MASON, D.M. (1988). Laws of the iterated logarithm in the tails for weighted uniform empirical processes. Ann. Probab. 16 126–141.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Einmahl, J.H.J., HAEUSLER, E., and MASON, D.M. (1988). On the relationship between the almost sure stability of weighted empirical distributions and sums of order statistics. Prob. Th. Rel. Fields 79 59–74.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    HAAN, DE, L. (1975). On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts 32, Amsterdam.Google Scholar
  9. [9]
    HAEUSLER, E. and MASON, D.M. (1987). Laws of the iterated logarithm for the middle portion of the sample. Math. Proc. Cambridge Philos. Soc. 101 301–312MathSciNetCrossRefGoogle Scholar
  10. [10]
    KIEFER, J. (1972). Iterated logarithm analogues for sample quantities when Pn ↓ 0. Proc. Sixth Berkeley Symp. Math. Statist. Prohab. Vol. I, 227–244.Google Scholar
  11. [11]
    MALLER, R.A. and RESNICK, S.L (1984). Limiting behaviour of sums and the term of maximum modulus. Proc. London Math. Soc. 49 385–422.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    MIKOSCH, T. (1988). Interated logarithm results for rapidly growing random walks. Statistics 19 107–115.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    MORI, T. (1976). The strong law of large numbers when extreme terms are excluded from sums. Z. Wahrsch. Verw. Gebiete 36, 189–194.MATHCrossRefGoogle Scholar
  14. [14]
    MORI, T. (1981). The relation of sums and extremes of random variables. Session Summary Booklet, Invited Papers, Buenos Aires Session, Nov. 30-Dec. 11, (International Statistical Institute) 879–894.Google Scholar
  15. [15]
    PRUITT, W.E. (1981). General one-sided laws of the iterated logarithm.Ann. Probab. 9 1–48.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    PRUITT, W.E. (1987). The contribution to the sum of the summand of maximum modulus. Ann. Probab. 15 885–896.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    REVESZ, P. and WILLEKENS, E. (1987). On the maximal distance between two renewal epochs. Stoc. Proc. 27 21–41.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    SHORACK, G.R. (1980). Some laws of the iterated logarithm type results from the empirical process. Austral. J. Statist. 22 50–59.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    SHORACK, G.R. and WELLNER, J.A. (1982). Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probab. 10, 639–652.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    SHORACK, G.R. and WELLNER, J.A. (1986). Empirical Processes with Application to Statistics. Wiley, New York.Google Scholar
  21. [21]
    STIGLER, S.M. (1973). The asymptotic distribution of the trimmed mean. Ann. Statist. 1 472–477.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    STUTE, W. (1982). The oscillation behavior of empirical processes. Ann. Probab. 10 86–107.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    TEICHER, H. (1979). Rapidly growing random walks and a associated stopping time. Ann. Probab. 7 1078–1081.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    WELLNER, J.A. (1978). Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Wahrsch. Verw. Gebiete 45 73–88.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    ZHANG, C.-H. (1986). The lower limit of a normalized random walk.Ann. Probab. 14 560–581.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1991

Authors and Affiliations

  • Erich Haeusler
    • 1
  • David M. Mason
    • 2
  1. 1.Mathematical InstituteUniversity of MunichMunich 2West Germany
  2. 2.Department of Mathematics SciencesUniversity of DelawareNewarkUSA

Personalised recommendations