Some remarks on Γ-convergence and least squares method

  • Ennio De Giorgi
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 5)


In the study of semicontinuity, relaxation, and Γ-convergence problems, few attention has been devoted, up to now, to questions concerning functionals arising in the study of differential equations or systems by the method of least squares. I think that a systematic study of these functionals could lead to interesting results, as, for instance, a reasonable “variational” definition of “weak solutions” of differential equations or systems.


Weak Solution Open Subset Weak Topology Lipschitz Continuous Function Arbitrary Real Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Amirat, K. Hamdache and A. Ziani:Homogénéization d’équations hyperboliques du premier ordreApplication auxmilieux poreux, preprint.Google Scholar
  2. [2]
    M. Carriero, A. Leaci and E. Pascali:Convergenza per l’equazione degli integrali primi associata al problema del rimbalzo elastico unidhnensionale, Ann. Mat. Pura Appl. (4) 33 (1983), 227–256.MathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Carriero, A. Leaci and E. Pascali: Sulle soluzioni délie equazioni aile derivate parziali del primo ordine in insiemi di perimetro finito con termine noto misura, Rend. Sem. Mat. Univ. Padova 73 (1985), 63–87.MathSciNetMATHGoogle Scholar
  4. [4]
    G. Dal Maso and L. Modica: A generai theory of variational functional, in Topics in Functional Analysis 1980–81, Quaderni della Scnola Normale Superiore di Pisa, Pisa, 1982.Google Scholar
  5. [5]
    R.J. DiPerna and P.L. Lions: Ordinary differential equations, trans-port theory and Sobolev spaces, Invent. Math. 98 (1989), 511–547.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    G. Folland: Introduction to partial differential equations, Princeton University Press, Princeton, N.J., 1976.MATHGoogle Scholar
  7. [7]
    A. Leaci: Sulle soluzioni generalizzate di equazioni alle derivate par-ziali del primo ordine, Note Mat. 4 (1984), 113–148.MathSciNetMATHGoogle Scholar
  8. [8]
    L. Mascarenhas: A linear homogenization problem with time dependent coefficient, Trans. Amer. Math. Soc. 281 (1984), 179–195.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    M. Miranda: Distribuzioni aventi derivate misure. Insiemi di perimetro finito, Ann. Scuola Norm. Sup. Pisa 18 (1964), 27–56.MathSciNetMATHGoogle Scholar
  10. [10]
    L. Modica and S. Mortola: Un esempio di Γ -convergenza, Boll. Un. Mat. Ital. 14-B (1977), 285–299.MathSciNetGoogle Scholar
  11. [11]
    L. Tartar: Remarks on homogenization, Homogenization and Effective Moduli of Materials and Media, 228–246, the IMA Vol. in Math, and its Appl., vol. 1, Springer, 1986.CrossRefGoogle Scholar
  12. [12]
    L. Tartar: Nonlocal effects induced by homogenization, Partial Differential Equations and the Calculus of Variations, Essays in Honor of E. De Giorgi, edited by F. Colombini, A. Marino, L. Modica, S. Spagnolo, Birkhäuser, 1989.Google Scholar

Copyright information

© Birkhäuser Boston 1991

Authors and Affiliations

  • Ennio De Giorgi
    • 1
  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations