Homogenization, Plasticity and Yield Design

  • Guy Bouchitte
  • Pierre Suquet
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 5)


We consider an epi-convergence problem arising from the theory of yield design. The functional under consideration has a linear growth with respect to the deformation tensor of the displacement field, and the problem is naturally posed in a space of displacement fields with bounded deformation. The problem includes a linear constraint which can be closed or not closed, depending on the type of boundary conditions considered. In the case where the constraint is not closed (applied forces on a part of the boundary) a relaxation term appears. Physically the strength of the loaded boundary turns out to be smaller than the natural guess deduced from the well known Average Variational Principle.


Layered Material Limit Load Deformation Tensor Relaxation Term Yield Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ANZELLOTTI M.: “On the existence of the rates of stress and displacement for Prandtl-Reuss Plasticity”. Quart. Appl. Math., 46, 1983, p 181–208.MathSciNetGoogle Scholar
  2. [2]
    ATTOUCH H.: Variational convergence for functions and operators. Pitman. London. 1984.MATHGoogle Scholar
  3. [3]
    AZE D.: “Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d’épi-convergence”. Ricerce di Matematica, 35, 1986, p 125–159.MathSciNetMATHGoogle Scholar
  4. [4]
    BENSSOUSSAN A., LIONS J.L., PAPANICOLAOU G.: Asymptotic Analysisfor Periodic Structures. North Holland. Amsterdam. 1978.Google Scholar
  5. [5]
    BOUCHITTE G.: “Convergence et relaxation de fonctionnelles du calcul des variations à croissance linéaire. Application à l’homogénéisation en Plasticité”. Ann. Fac. Se. Toulouse, 8, 1986–1987, p 7–36.Google Scholar
  6. [6]
    BOUCHITTE G.: “Représentation intégrale de fonctionnelles convexes sur un espace de mesures. Convergence”. Ann. Univ. Ferrara., 33, 1987, p 113–156.MathSciNetMATHGoogle Scholar
  7. [7]
    BOUCHITTE G., SUQUET P.: “Charges limites, Plasticité et homogénéisation: le cas d’un bord chargé”. C. R. Acad. Se. Paris, I., 305, 1987, p 441–444.MathSciNetGoogle Scholar
  8. [8]
    BOUCHITTE G., VALADIER M: “Multi-fonctions s.c.i. et régularisée s.c.i. essentielle. Fonctions de mesure dans le cas sous linéaire”, in Proceedings Congrès Franco-Québécois Analyse non linéaire. Gauthier Villars. Paris. 1989.Google Scholar
  9. [9]
    BOUCHITTE G., VALADIER M.: “Integral representation of convex functionals on a space of measures”. J. Functional Analysis, 80, 1988, p 398–420.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    DAL MASO G.: “Integral representation on BV(Ω) of Γ-limits of variational integrals”. Manuscripta Math., 30, 1980, p 387–416.MATHCrossRefGoogle Scholar
  11. [11]
    DE BUHAN P.: Approche fondamentale du calcul à la rupture des ouvrages en sols renforcés. Thèse d’Etat. Paris. 1986Google Scholar
  12. [12]
    DE GIORGI E.: “Convergence problems for functionals and operators” in Recent Methods in Nonlinear Analysis. Pitagora. Bologna. 1978. p 131–188.Google Scholar
  13. [13]
    DEMENGEL F., TANG QI: “Homogénéisation en Plasticité”. C. R. Acad. Sc. Paris, I, 303, 1986, p 339–342.MathSciNetGoogle Scholar
  14. [14]
    MARCELLINI P.: “Periodic solutions and homogenization of nonlinear variational problems”. AnnaliMatematica Pura Appl, 117, 1978, p 139–152.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    SUQUET P.: “Un espace fonctionnel pour les équations de la Plasticité”. Ann.Fac. Sc. Toulouse.1, 1979, p 77–87.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    SUQUET P.: “Analyse limite et homogénéisation”. C. R. Acad. Sc. Paris, II, 296, 1983, p 1355–1358.MathSciNetGoogle Scholar
  17. [17]
    TEMAM R.: Mathematical problems in Plasticity. Gauthier Villars. Paris. 1985.Google Scholar
  18. [18]
    TURGEMAN S., PASTOR J.: “Comparaison des charges limites d’une structure hétérogène et homogénéisée”. J. Méca. Th. Appl., 6, 1987, p 121–143.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1991

Authors and Affiliations

  • Guy Bouchitte
    • 1
  • Pierre Suquet
    • 2
  1. 1.U.T.V.La Garde. CedexFrance
  2. 2.L.M.A.Marseille. Cedex 09France

Personalised recommendations