On Functional Limit Theorems for a Class of Stochastic Processes Indexed by Pseudo-Metric Parameter Spaces (with applications to empirical processes)

  • Peter Gaenssler
  • Wilhelm Schneemeier
Part of the Progress in Probability book series (PRPR, volume 20)

Abstract

Let T = (T, d) be a pseudo-metric space assumed to be totally bounded for the pseudo-metric d. Let \({{\ell }^{\infty }}\) (T) be the space of all bounded real valued functions on T equipped with the supremum norm \(\left\| \cdot \right\|T\) (defined by \(\left\| x \right\|T:=\sup \{|x(t)|:t\in T\},x\in {{\ell }^{\infty }}(T)\) ) and let S 0:= U b (T,d) be the subspace of \({{\ell }^{\infty }}\) (T) consisting of all uniformly d-continuous functions on T; note that S 0 is separable and closed in \(({{\ell }^{\infty }}(T),\left\| \cdot \right\|t)\) cf. Corollary 2 in Section 2 below.

Keywords

Entropy Zinn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.T. Andersen and V. Dobrie, The Central Limit Theorem for Stochastic Processes, Ann. Probability 15 (1987), 164–177.MATHCrossRefGoogle Scholar
  2. [2]
    K.S. Alexander, The Central Limit Theorem for Empirical Processes on Vapnik-Òervonenkis classes, Ann. Probability 15 (1987), 178–203.MATHCrossRefGoogle Scholar
  3. [3]
    R.F. Bass and R. Pyke, The space D(A) and weak convergence for set-indexed processes, Ann. Probability 13 (1985), 860–884.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R.M. Dudley, Central limit theorems for empirical measures, Ann. Probability 6 (1978), 899–929. Correction, ibid. 7, 1979, pp. 909–911MathSciNetMATHGoogle Scholar
  5. [5]
    R.M. Dudley, Vapnik-Cervonenkis Donsker classes of functions, In: As- pects Statistiques et aspects physiques des processus gaussiens (Proc. Colloque C.N.R.S. St. Flour, 1980), C.N.R.S., Paris (1981), 251–269.Google Scholar
  6. [6]
    R.M. Dudley, Donsker classes of functions, In: Statistics and Related Topics (Proc. Symp. Ottawa, 1980), North Holland, N.Y. (1981), 341–352.Google Scholar
  7. [7]
    R.M. DudleyA course on empirical processes,pp. 1–142 in “École d’Été de Probabilités de Saint-Flour XII-1982”, Lecture Notes in Math. 1097. Springer Verlag 1984Google Scholar
  8. [8]
    P. Gaenssler, Empirical Processes, IMS Lecture Notes - Monograph Series 3 (1983). 179 pp.Google Scholar
  9. [9]
    P. Gaenssler, E. Haeusler and W. Schneemeier, Selected Topics on Empirical Processes, In: Proceedings of the Third Prague Symposium on Asymptotic Statistics. Ed. by P. Mandl and M. Huskov£–Amsterdam-New York-Oxford, Elsevier Science Publishers B.V. (1984), 57–91.Google Scholar
  10. [10]
    P. Gaenssler, Bootstrapping empirical measures indexed by Vapnik-Chervonenkis classes of sets, pp. 467–481 in “Probability Theory and Mathematical Statistics, Vol. 1” (Vilnius 1985 ), VNU Sci. Press, Utrecht 1987.Google Scholar
  11. [11]
    E. Giné and J. Zinn, Some limit theorems for empirical processes, Ann. Probability 12 (1984), 929–989.MATHCrossRefGoogle Scholar
  12. [12]
    E. Hewitt, Certain generalizations of the Weierstrass Approximation Theorem, Duke Math. J. 14 (1947), 419–427.Google Scholar
  13. [13]
    J. Hoffmann-Jorgensen, Stochastic processes on Polish spaces. (to appear)Google Scholar
  14. [14]
    V.I. Koleinskii, Functional Limit Theorems and Empirical Entropy I, in Russian, Theor. Probability Math. Statist. (Kiev) 33 (1985), 31–42.Google Scholar
  15. [15]
    G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Statist. 42 (1971), 1285–1295.Google Scholar
  16. [16]
    D. Pollard, Convergence of Stochastic Processes, Springer Verlag, New York (1984). 215 pp.MATHCrossRefGoogle Scholar
  17. [17]
    M.L. Straf, Weak convergence of stochastic processes with several parameters, In: Proceedings 6th Berkeley Symposium on Math. Statistics and Probability, Vol. 2, Berkeley–Los Angeles, Univ. California Press (1971), 187–221.Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Peter Gaenssler
    • 1
  • Wilhelm Schneemeier
    • 1
  1. 1.Mathematical InstituteUniversity of MunichMunich 2W.-Germany

Personalised recommendations