Analytic and Empirical Evidences of Isoperimetric Processes

  • Christer Borell
Part of the Progress in Probability book series (PRPR, volume 20)


In this paper we will tell about different isoperimetric inequalities of either empirical or theoretic nature. The underlying models come from economy or game theory.


Random Walk Stock Prex Isoperimetric Inequality Transition Matrice Prediction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Bachelier, Theory of speculation, in reference [8].Google Scholar
  2. [2]
    F. Black and M. Scoles, The pricing of options and corporate liabilities, J. Polit. Econom 81 (1973), 637–659.CrossRefGoogle Scholar
  3. [3]
    C. Boren, Geometric bounds on the Ornstein-Uhlenbeck velocity process, Z. Wahrscheinlichkeitstheorie verw. Gebiete 70 (1985), 1–13.CrossRefGoogle Scholar
  4. [4]
    C. Boren, Intrinsic bounds on some real-valued stationary random functions, pp. 70–95 in “Probability in Banach Spaces V”, Lecture Notes in Math. 1153. Springer Verlag 1985.Google Scholar
  5. [5]
    H. Brascamp, E.H. Lieb and J.M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    P.H. Cootner, “The Random Character of Stock Market Prices,” M.I.T. Press, Cambridge, MA. 1964.Google Scholar
  7. [7]
    A. Ehrhard, Inégalités isopérimetriques et intégrales de Dirichlet Gaussiennes, Ann. Sci. Éc. Norm. Sup. 17 (1984), 317–332.MathSciNetMATHGoogle Scholar
  8. [8]
    E.F. Fama, The behaviour of stock-market prices, Journal of Business 38 (1965), 34–105.CrossRefGoogle Scholar
  9. [9]
    X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, pp. 1–96 in “École d’Été de Probabilités Saint-Flour IV-1974”, Lecture Notes in Math. 480. Springer Verlag 1975.Google Scholar
  10. [10]
    T. Figiel, J. Lindenstrauss and V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    C.W.J. Granger and O. Morgenstern, “Predictability of Stock Market Prices,” Heath-Lexington Book, Lexington, Mass. 1970.Google Scholar
  12. [12]
    C.W.J. Granger, “A survey of empirical studies of capital markets,” E.J. Elton and M.J. Gruber Ed. North-Holland Publishing Company, Amsterdam, Oxford 1975.Google Scholar
  13. [13]
    J.M. Harrison and S.R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and their Applications 11 (1981), 215–260.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    N. Ikeda and S. Watanabe, “Stochastic Differential Equations and Diffusion Processes,” North-Holland Publishing Company, Amsterdam, Oxford, New York 1981.MATHGoogle Scholar
  15. [15]
    P.L. Jennergren and P. Toft-Nielsen, An investigation of random walks in the Danish stock market, National4konomisk Tidsskrift 115 (1977), 254–269.Google Scholar
  16. [16]
    R.A. Leitch and A.S. Paulson, Estimation of stable law parameters; Stock price behaviour applications, Journal of the American Statistical Association 70 (1975), 690–697.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    R.A. Levy, Random walks: Reality or myth, Financial Analysts Journal XXIII No. 6 (1967).Google Scholar
  18. [18]
    P.D. Praetz, The distribution of share price changes, Journal of Business 45 (1972), 49–55.CrossRefGoogle Scholar
  19. [19]
    P.A. Samuelson, Mathematics of speculative price, SIAM Rev XX (1973), 1–42.Google Scholar
  20. [20]
    D. Slepian, The one-sided barrier problem for Gaussian noise, The Bell System Technical Journal 41 (1962), 463–501.MathSciNetGoogle Scholar
  21. [21]
    C.W. Smith Jr., Option pricing: A review, J. Fin. Econom. 3 (1976), 3–51.CrossRefGoogle Scholar
  22. [22]
    B.G. Sorensen, En filtertest of danske aktiekurser, National0konomisk Tidsskrift 118 (1980), 140–148.Google Scholar
  23. [23]
    B.G. Sorensen, Regnskabsinformation og aktiemarkedets effektivitet: En empirisk analyse, Nationalokonomisk Tidsskrift 120 (1982), 223–241.Google Scholar
  24. [24]
    S.J. Wolfe, On a continuous analogue of the stochastic difference equation X n = p X-1 + B n, Stochastic Processes and their Applications 12 (1982), 301–312.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Christer Borell
    • 1
    • 2
  1. 1.AngeredSweden
  2. 2.Department of MathematicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations