On the identification of the limits in the law of the iterated logarithm in Banach spaces

  • A. de Acosta
  • M. Ledoux
Part of the Progress in Probability book series (PRPR, volume 20)


In the very recent paper [7], Ledoux and Talagrand have characterized the Banach space valued random vectors which satisfy the bounded law of the iterated logarithm (BLIL), as well as those which satisfy the compact law of the iterated logarithm (CLIL) (for a description of these questions, see [2], [3], [7]).


Banach Space Random Vector Reproduce Kernel Hilbert Space Iterate Logarithm Separable Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. de Acosta and J. Kuelbs, Some results on the cluster set C({S n /a n }) and the LIL, Ann. Probability 11 (1983), 102–122.MATHCrossRefGoogle Scholar
  2. [2]
    A. de Acosta, J. Kuelbs and M. Ledoux, An inequality for the law of the iterated logarithm, pp. 1–29 in “Probability in Banach spaces IV”, Lecture Notes in Math. 990. Springer-Verlag, 1983.Google Scholar
  3. [3]
    V. Goodman, J. Kuelbs and J. Zinn, Some results on the LIL in Banach space with applications to weighted empirical processes, Ann. Probability 9 (1981), 713–752.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    J. Hoffmann-Jorgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186.MathSciNetGoogle Scholar
  5. [5]
    J. Kuelbs, When is the cluster set of {S n/an empty?, Ann. Probability 9 (1981), 377–394.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. Ledoux, The law of the iterated logarithm in uniformly convex spaces, Trans. Amer. Math. Soc 294 (1986), 351–365.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. Ledoux and M. Talagrand, Characterization of the law of the iterated logarithm in Banach spaces, Ann. Probability 16 (1988), 1242–1264.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    G. Pisier, Le théorème de la limite centrale et la loi du logarithme iteré dans les espaces de Banach, Séminaire Maurey-Schwartz 1975–76, Exposés 3 et 4. Ecole Polytechnique, Paris (1976).Google Scholar
  9. [9]
    G. Pisier, Probabilistic methods in the geometry of Banach spaces, pp. 167–241 in “Probability and Analysis”, Lecture Notes in Mathematics 1206, Springer-Verlag, 1986.Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • A. de Acosta
    • 1
  • M. Ledoux
    • 2
  1. 1.Department of Mathematics and StatisticsCase Western Reserve UniversityClevelandUSA
  2. 2.Département de MathématiqueUniversité de StrasbourgStrasbourgCedexFrance

Personalised recommendations