Simple Memory: A Theory for Archicortex

  • D. Marr
  • David Willshaw
  • Bruce McNaughton


It is proposed that the most important characteristic of archicortex is its ability to perform a simple kind of memorizing task. It is shown that rather general numerical constraints roughly determine the dimensions of memorizing models for the mammalian brain, and from these is derived a general model for archicortex.


Pyramidal Cell Simple Representation Mossy Fibre Climbing Fibre Collateral Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P. 0. 166 Correlation of structural design with function in the archicortex. In Brain and conscious experience (ed. J. C. Eccles), pp. 59–84. Berlin: Springer-Verlag.Google Scholar
  2. Andersen, P. 0., Eccles, J. C. & Leyning, Y. 1963 Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature, Lond. 198, 540–542.Google Scholar
  3. Blackstad, T. W. 1956 Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J. comp. Neurol. 105, 417–538.CrossRefGoogle Scholar
  4. Brindley, G. S. 1969 Nerve net models of plausible size that perform many simple learning tasks. Proc. Roy. Soc. Lond. B 174, 173–191.CrossRefGoogle Scholar
  5. Cajal, S. R. 1915 Histologie du Système Nerveux, Tome I I. Madrid: C.S.I.C.Google Scholar
  6. Cragg, B. G. 1965 Afferent connections of the allocortex. J. Anat. 99, 339–357.Google Scholar
  7. Cragg, B. G. 1967 The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654.Google Scholar
  8. Eccles, J. C., Llinas, R. & Sasaki, K. 1966 Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Expl Brain Res. 1, 17–39.Google Scholar
  9. Hamlyn, L. H. 1962 The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Anat. 96, 112–120.Google Scholar
  10. Lomo, T. 1971 Potentiation of monosynaptic EPSP’s in the perforant path—dentate granule cell synapse. Expl Brain. Res. 12, 46–63.Google Scholar
  11. Lorente de No, R. 1933 Studies on the structure of the cerebral cortex. I. The Area Entorhinalis. J. Psychol. Neurol. (Lpz.) 45, 381–438.Google Scholar
  12. Lorente de No, R. 1934 Studies on the structure of the cerebral cortex. II. Continuation of the study of the Ammonic system. J. Psychol. Neurol. (Lpz.) 46, 113–177.Google Scholar
  13. Marr, D. 1969 A theory of cerebellar cortex. J. Physiol. 202, 437–470.Google Scholar
  14. Marr, D. 1970 A theory for cerebral neocortex. Proc. Roy. Soc. Lond. B 176, 161–234.Google Scholar
  15. Raisman, G., Cowan, W. M. & Powell, T. P. S. 1965 The extrinsic afferent, commissural and association fibres of the hippocampus. Brain 88, 963–996.CrossRefGoogle Scholar
  16. Raisman, G., Cowan, W. M. & Powell, T. P. S. 1966 An experimental analysis of the efferent projection of the hippocampus. Brain 89, 83–108.CrossRefGoogle Scholar
  17. Schaffer, K. 1892 Beitrag zur Histologie der Ammonshornformation. Arch. mikrosk. Anat. 39, 611–632.CrossRefGoogle Scholar
  18. Shariff, G. A. 1953 Cell counts in the primate cerebral cortex. J. comp. Neurol. 98, 381–400.CrossRefGoogle Scholar
  19. Spencer, W. A. & Kandell, E. R. 1961 Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol. 24, 274–285.Google Scholar
  20. White, L. E. Jr. 1959 Ipsilateral afferents to the hippocampal formation in the albino rat. I. Cingulum projections. J. comp. Neurol. 113, 1–41.Google Scholar
  21. Ashwood TJ, Lancaster B, Wheal HV (1984): In vivo and in vitro studies on putative interneurons in the rat hippocampus: Possible mediators of feed-forward inhibition. Brain Res 293: 279–291CrossRefGoogle Scholar
  22. Barnes CA, McNaughton BL, Mizumori SJY, Leonard BW, Lin L-H (1990): Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83: 287–300CrossRefGoogle Scholar
  23. Bliss TVP, Gardner-Medwin AR (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetised rabbit following stimulation of the perforant path. J Physiol 232: 357–374Google Scholar
  24. Bliss TVP, Lmo T (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetised rabbit following stimulation of perforant path. J Physiol 232: 331–356Google Scholar
  25. Buszdki G (1984): Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22: 131–153CrossRefGoogle Scholar
  26. Castro CA, Silbert LH, McNaughton BL, Barnes CA (1989): Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature 342: 545–548CrossRefGoogle Scholar
  27. Collingridge GL, Kehl SJ, McLennan H (1983): Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Gond) 334: 33–46Google Scholar
  28. Douglas RM, McNaughton BL, Goddard GV (1983): Commissural inhibition and facilitation of granule cell discharger in fascia dentata. J Comp Neurol 219: 285–294CrossRefGoogle Scholar
  29. Fishbein W, Gutwein BM (1977): Paradoxical sleep and memory storage processes. Behav Biol 19: 425–464CrossRefGoogle Scholar
  30. Gustafsson BH, Wigström WC, Abraham WC, Huang Y-Y (1987): Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7: 774–780Google Scholar
  31. Harris EW, Ganong AH Cotman CW (1984): Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 323: 132–137CrossRefGoogle Scholar
  32. Hebb DO (1949): The Organization of Behavior. New York: John Wiley and Sons Home JA and McGrath MJ (1984): The consolidation hypothesis for REM sleep function: Stress and other confounding factors—a review. Biol Psychol 18: 165–184Google Scholar
  33. Kelso SR, Ganong AH, Brown TH (1986): Hebbian synapses in hippocampus. Proc Nall Acad Sci USA 83: 5326–5330CrossRefGoogle Scholar
  34. Kohonen T (1972): Correlation matrix memories. IEEE Transactions on Computers, C-21, VerlagGoogle Scholar
  35. Kohonen T (1978): Associative Memory: A system theoretic approach. New York: Springer-VerlagGoogle Scholar
  36. Larson J, Wong D, Lynch G (1986): Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368: 347–350CrossRefGoogle Scholar
  37. Leconte P, Bloch V (1971): Déficit de in rétention d’un conditionnement après privation de sommeil paradoxal chez le rat. C R Acad Sci (D) (Paris) 273: 86–88Google Scholar
  38. Leonard B (1990): The contribution of velocity, spatial experience, and proximal visual complexity to the location-and direction-specific discharge of hippocampal complex-spike cells in the rat. Unpublished doctoral dissertation, University of Colorado, BoulderGoogle Scholar
  39. LOmo T (1966): Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand (Suppl) 68: 128Google Scholar
  40. Marr D (1969): A theory of cerebellar cortex. J Physiol 202: 437–470Google Scholar
  41. Marr D (1970): A theory for cerebral cortex. Phil Trans Roy Soc B 176: 161–234Google Scholar
  42. Marr D (1971): Simple memory: theory for archicortex. Phil Trans Roy Soc B 262: 23–81CrossRefGoogle Scholar
  43. McNaughton BL, Barnes CA (1990): From cooperative synaptic enhancement to associative memory: bridging the abyss. Sem Neurosci (in press)Google Scholar
  44. McNaughton BL, Barnes CA, O’Keefe J (1983): The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52: 41–49CrossRefGoogle Scholar
  45. McNaughton BL, Barnes CA, Rao G, Baldwin J, Rasmussen M (1986): Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information. J Neurosci 6: 563–571Google Scholar
  46. McNaughton BL, Douglas RM, Goddard GV (1978): Synaptic enhancement in fascia dentata: co-operativity among coactive afferents. Brain Res 157: 277–293CrossRefGoogle Scholar
  47. McNaughton BL, Morris RGM (1987): Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10: 408–415CrossRefGoogle Scholar
  48. McNaughton BL, Nadel L (1990): Hebb-Marr networks and the neurobiological representation of action in space. In: Neuroscience and Connectionist Theory, Gluck MA, Rumelhart DE, eds. New Jersey: Lawrence Erlbaum AssociatesGoogle Scholar
  49. Mizumori SJY, McNaughton BL, Barnes CA (1989a): A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity. J Neurophysiol 61: 15–31Google Scholar
  50. Mizumori SJY, McNaughton BL, Barnes CA, Fox KB (1989b): Preserved spatial coding in hippocampal CAl pyramidal cells during reversible suppression of CA3 output: evidence for pattern completion in hippocampus. J Neurosci 3915–3928Google Scholar
  51. O’Keefe J (1976): Place units in the hippocampus of the freely moving rat. Exp Neurol 51: 78–109CrossRefGoogle Scholar
  52. O’Keefe J, Conway DH (1978): Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 31: 573–590Google Scholar
  53. Pavlides C, Winson J (1989): Influences of hippocampal place cell firing in the wake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9: 2907–2918Google Scholar
  54. Smith C (1983) Sleep states and learning: a review of the animal literature. Biobehav Rev 9: 157–168Google Scholar
  55. Scharfman HE, Sarvey JM (1983): Inhibition of post-synaptic firing in the hippocampus during repetitive stimulation blocks long-term potentiation. Soc Neurosci Abstr 9: 677Google Scholar
  56. Wigström H, Gustafsson B (1983): Large long-lasting potentiation in the dentate gyms in vitro during blockade of inhibition. Brain Res 275: 153–158CrossRefGoogle Scholar
  57. Wigström H, Gustafsson B (1984): A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro. Neurosci Leu 44: 327–332CrossRefGoogle Scholar
  58. Wigström H, Gustafsson B, Huang Y-Y, Abraham WC (1986): Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol Scand 126: 317–319CrossRefGoogle Scholar
  59. Willshaw DJ, Buckingham JT (1990): An assessment of Marr’s theory of the hippocampus as a temporary memory store. Phil Trans Roy Soc B (in press)Google Scholar

Copyright information

© Birkhäuser Boston 1991

Authors and Affiliations

  • D. Marr
    • 1
    • 2
  • David Willshaw
    • 2
  • Bruce McNaughton
    • 3
  1. 1.Trinity CollegeCambridgeUK
  2. 2.Centre for Cognitive ScienceUniversity of EdinburghEdinburghScotland UK
  3. 3.Division of Neural Systems, Memory and AgingUniversity of ArizonaTucsonUSA

Personalised recommendations