Skip to main content

Molecular Biology of Peptide and Glycoprotein Hormone Receptors

  • Chapter
Book cover Molecular Biology of G-Protein-Coupled Receptors

Abstract

Although over sixty mammalian peptides have been identified, their receptor actions are, with the notable exception of the atrial peptide family, mediated exclusively by G-protein-linked mechanisms (Hanley, 1989). The full spectrum of nonphotoreceptor G-protein mechanisms have been described for peptide signaling, including positive and negative regulation of adenylyl cyclase, stimulation of phospholipase C, and positive and negative regulation of ion channels (Table 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990): Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732

    Article  Google Scholar 

  • Blumer KG, Rencke JE, Thorner J (1988): The STE 2 gene product is the ligand-binding component of the a-factor receptor of Saccharomyces cerevisiae. J Biol Chem 263: 10836–10842

    Google Scholar 

  • Bost KL, Blalock JE (1989): Preparation and use of complementary peptides. Methods Enzymol 168: 16–28

    Article  Google Scholar 

  • Bouvier M, Hausdorff WP, DeBlasi A, O’Dowd BF, Kobilka BK, Caron MG, Lefkowitz FJ (1988); Removal of phosphorylation sites from the ß 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 333: 370–373

    Article  Google Scholar 

  • Bunnemann B, Fuxe K, Metzger R, Mullins J, Jackson TR, Hanley MR, Ganten D (1990): Autoradiographic localization of MAS proto-oncogene mRNA in adult rat brain using in situ hybridization. Neurosci Lett 114: 147–153

    Article  Google Scholar 

  • Burgen ASV, Roberts GCK, and Feeney J (1975). Binding of flexible ligands to macromolecules. Nature 253: 753–755

    Article  Google Scholar 

  • Cheung GH, Sigal IS, Dixon RGJ, Strader CD (1989): Agonist-promoted sequestration of the ß2-adrenergic receptor requires regions involved in functional coupling with Gs. Mol Pharmacol 34: 132–138

    Google Scholar 

  • Chung FC, Wang CD, Potter PC, Venter JC, Fraser CM (1988): Site-directed mutagenesis and continuous expression of human ß-adrenergic receptors: Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J Biol Chem 263: 4052–4055

    Google Scholar 

  • Coughlin SR, Escobedo JA, Williams LT (1989): Role of phosphatidylinositol kinase in PDGF receptor signal transduction Science 243: 1191–1193

    Article  Google Scholar 

  • Curtis CAM, Wheatley M, Bansal S, Birdsall NGM, Eveleigh P, Peddar EK, Poyner DR, Hulme EC (1989): Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 264: 489–495

    Google Scholar 

  • Dam TV, Takeda Y, Krause JE, Escher E, Quirion R (1990): γ-Preprotachykinin- (72-92)-peptide amide: An endogenous preprotachykinin I gene-derived peptide that preferentially binds to neurokinin-2 receptors. Proc Natl Acad Sci USA 87: 246–256

    Google Scholar 

  • Dixon RGJ, Sigal ID, Candelore MR, Register RB, Scatterwood W, Rands E, Strader CD (1987): Structural features required for ligand binding to the ß-adrenergic receptor. EMBO J 6: 3269–3275

    Google Scholar 

  • Elton TS, Dion LD, Bost KL, Oparil S, Blalock JE (1988): Purification of an angiotensin II binding protein using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci USA 85: 2518–2552

    Article  Google Scholar 

  • Fraser CM, Chung FZ, Wang CD, Venter JD (1988): Site-directed mutagenesis of human ß-adrenergic receptors: Substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Proc Natl Acad Sci USA 85: 5478–5482

    Article  Google Scholar 

  • Goldstein A, Aronow L, Kalman S (1974): Principles of Drug Action, 2nd ed. New York: Wiley

    Google Scholar 

  • Hagen DC, McCaffrey G, Sprague GF (1986): Evidence that the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene structure and implications for the structure of the presumed receptor. Proc Natl Acad Sci USA 83: 1418–1422

    Article  Google Scholar 

  • Hanley MR (1985): Peptide binding assays. In: Neurotransmitter Receptor Binding Yamamura HI, Enna SJ, Kuhar MJ, New York: Raven Press, 2nd ed, pp 91–102

    Google Scholar 

  • Hanley MR (1989): Neuropeptide receptors: Structure and transduction mechanisms. In: Hormones and Cell Regulation, Nunez J, Dumont JE, Denton R, London: John Libbey, Vol 13, pp 3–9

    Google Scholar 

  • Hanley MR (1990): Molecular and cellular characterisation of the MAS oncogene as a neural peptide receptor. In: Neuropeptides and Their Receptors, Schwartz TW, Hilsted LM, Rehfeld JF, Alfred Benzon Symp 29. Copenhagen: Munksga- ard, pp 325–329

    Google Scholar 

  • Hanley MR, Jackson T (1987): Substance K receptor. Nature 329: 766–767

    Article  Google Scholar 

  • Hanley MR, Cheung WT, Hawkins P, Poyner D, Benton HP, Blair L, Jackson TR, Goedert M (1990): The MAS oncogene as a neural peptide receptor: Expression, regulation and mechanism of action. Ciba Found Symp 150: 23–46

    Google Scholar 

  • Harada Y, Takahashi T, Kuno M, Nakayama K, Masu Y, Nakanishi S (1987): Expression of two different tachykinin receptors in Xenopus oocytes by exogenous mRNAs. J Neurosci 7: 3265–3273

    Google Scholar 

  • Hershey AD, Krause JE (1990): Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science 247: 958–962

    Article  Google Scholar 

  • Herskowitz I, Marsh L (1987): Conservation of a receptor/signal transduction system. Cell 50: 995–996

    Article  Google Scholar 

  • Herzog H, Hort YJ, Ball HJ, Hayes G, Shine J, Selbie LA (1992): A cloned human neuropeptide Y1 receptor couples to two different second messenger systems. Proc Natl Acad Sci USA In press

    Google Scholar 

  • Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O’Hara PJ, Mulvihill ER, Aimers W, Hagen FS (1991): Cloning, expression and gene expression of a G-protein coupled glutamate receptor from rat brain. Science 252: 1318–1321

    Article  Google Scholar 

  • Ishihara T, Nakamura S, Yoshito K, Takahashi T, Takahashi K, Nagata S (1991): Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10: 1635–1641

    Google Scholar 

  • Jackson TR, Blair LAC, Marshall J, Goedert M, Hanley MR (1988): The mas oncogene encodes an angiotensin receptor. Nature 335: 43–440

    Article  Google Scholar 

  • Jackson TR, Hanley MR (1989): Tumour promotor 12-O-tetradecanoylphorbol 13-acetate inhibits mas/angiotensin receptor-stimulated inositol phosphate production and intracellular calcium elevation in the 401L-C3 neuronal cell line. FEBS Lett 251: 27–30

    Article  Google Scholar 

  • Jenness DD, Burkholder AC, Hartwell LN (1983): Binding of the a factor receptor. Cell 35: 521–529

    Article  Google Scholar 

  • Juppner H, Abou-Samra A-B, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF, Hock J, Potts JT, Kronenberg HM, Serge GV (1991): A G-protein linked receptor for parathyroid hormone and parathyroid hormone- related peptide. Science 254: 1024–1026

    Article  Google Scholar 

  • Keinanen KP, Rajaniemi HJ (1986): Rat ovarian lutropin receptor is a transmembrane protein. Biochemistry 239: 83–87

    Google Scholar 

  • Kim IC, Ascoli M, Segaloff DL (1987): Immunoprecipitation of the lutropin/ choriogonadotrophic receptor from biosynthetically labelled Leydig tumour cells. J Biol Chem 262: 470–477

    Google Scholar 

  • Konopka JB, Jenness DD, Hartwell LH (1988): The C-terminus of S. cerevisiae a-pheromone receptor mediates an adaptive responsive to pheromone. Cell 54: 609–620

    Article  Google Scholar 

  • Lefkowitz J, Kobilka BK, Caron MG (1989): The new biology of drug receptors. Biochem Pharmacol 38: 2941–2948

    Article  Google Scholar 

  • Libert F, Lefort A, Gerard C, Parmentier M, Perret J, Ludgate M, Dumont J, Vassart G (1989a): Cloning, sequence and expression of the human thyrotropin ( TSH) receptor: Evidence for the binding of autoantibodies. Biochem Biophys ResCommun 165: 150–1255

    Google Scholar 

  • Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhart C, Simons M-J, Dumont JE, Vassart G (1989b): Selective amplification and cloning of four new members of the G-protein-coupled receptor family. Science 244: 569–572

    Article  Google Scholar 

  • Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF, Lodish HF, Goldring SR (1991): Expression cloning of an adenylate cyclase coupled calcitonin receptor. Science 254: 1022–1024

    Article  Google Scholar 

  • Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ (1992): Cloning and characterisation of a vasopressin V2 receptor: Chromosomal localization of gene suggests link to hereditary diabetes insipidus. Nature In press.

    Google Scholar 

  • Loosfelt H, Misrahi M, Atger M, Salesse R, Thi M, Jolivet A, Guiochon-Mantel A, Sar S, Jallal B, Gamier J, Milgrom E (1989): Cloning and sequencing of porcine LH-hCG receptor cDNA: Variants lacking transmembrane domain. Science 245: 525–528

    Article  Google Scholar 

  • Macfarland KC, Sprengel R, Phillips HD, Kohler M, Rosemblit N, Nikolics K, Segaloff DL, Seeburg PH (1989): Lutropin-choriogonadotropin receptor: An unusual member of the G-protein-coupled receptor family. Science 245: 494–499

    Article  Google Scholar 

  • Marsh L, Herskowitz I. (1988): STE2 protein of Saccharomyces kluyveri is a member of the rhodopsin/ß-adrenergic receptor family and is responsible for recognition of the peptide ligand α factor. Proc Natl Acad Sci USA 85: 3855–3859

    Article  Google Scholar 

  • Masu Y, Nakayama K, Yamaki H, Harada Y, Kuno M, Nakanishi S (1987): cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329: 836–838

    Google Scholar 

  • McEachern AE, Shelton ER, Shakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K (1991): Expression cloning of a rat B2 receptor. Proc Natl Acad Sci USA 88: 7724–7728

    Article  Google Scholar 

  • Misrahi M, Loosefelt H, Atger M, Sar S, Guiochon-Mantel A, Milgrom E (1990): Cloning sequencing and expression of human TSH receptor. Biochem Biophys Res Commun 166: 394–403

    Article  Google Scholar 

  • Morel A, O’Carroll AM, Brownstein MI, Lolait SJ, (1992): Molecular cloning and expression of a rat Via arginine vasopressin receptor. Nature In press

    Google Scholar 

  • Mulchahey JJ, Neil JD, Dion LD, Bost KL, Blalock JE (1986): Antibodies to the binding site of the receptor for lutenizing hormone releasing hormone (LHRH): Generation with a synthetic decapeptide encoded by an mRNA complementary to LHRH mRNA. Proc Natl Acad Sci USA 83: 9714–9718

    Article  Google Scholar 

  • Nagayama Y, Kaufman KD, Seto P, Rapoport B (1989): Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Commun 165: 1184–1190

    Article  Google Scholar 

  • Nakafuku M, Itoh H, Nakamura S, Kaziro Y (1987): Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the a-subunit of mammalian G-proteins. Proc Natl Acad Sci USA 84: 2140–2144

    Article  Google Scholar 

  • Nakayama N, Miyajima A, Arai K (1985): Nucleotide sequences of STE 2 and STE 3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4: 2643–2648

    Google Scholar 

  • O’Dowd BJ, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ (1988): Site-directed mutagenesis of the cytoplasmic domains of the human ß2-adrenergic receptor: Localization of regions involved in G-protein receptor coupling. J Biol Chem 263: 15985–15992

    Google Scholar 

  • O’Dowd BJ, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989): Palmi-toylation of the human adrenergic receptor. J Biol Chem 264: 7564–7569

    Google Scholar 

  • Parmentier M, Libert F, Maenhaut C, Lefort A, Gerard C, Perret J, Van Sande J, Dumont J, Vassart G (1989): Molecular cloning of the thyrotropin receptor. Science 246: 1620–1622

    Article  Google Scholar 

  • Payan DG (1985): Receptor-mediated mitogenic effects of substance P on cultured muscle cells. Biochem Biophys Res Commun 130: 104–109

    Article  Google Scholar 

  • Peach M (1977): Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol Rev 57: 313–370

    Google Scholar 

  • Poyner DR, Hawkins PT, Benton H, Hanley MR (1990): Changes in inositol lipids and phosphates after stimulation of the MAS-transfected NG115-401L-C3 cell line by mitogenic and non-mitogenic stimuli. Biochem J 271: 605–611

    Google Scholar 

  • Rabin M, Birnbaum D, Young D, Birchmeier C, Wigler M, Ruddle FH (1987): Human Resl and MAS1 oncogene located in regions of chromosome 6 associated with tumour-specific rearrangements. Oncogene Res 1: 169–178

    Google Scholar 

  • Saffroy M, Beaujounan JC, Torrens Y, Besseyre J, Bergström L, Glowinski J (1988): Localisation of tachykinin binding sites (NK1, NK2, NK3 ligands) in the rat brain. Peptides 9: 227–241

    Article  Google Scholar 

  • Sasai Y, Nakanishi S (1989): Molecular characterisation of rat substance K receptor and its mRNA. Biochem Biophys Res Commun 165: 695–702

    Article  Google Scholar 

  • Sasaki K, Yamono Y, Bardhan S, Iwai N, Murray J J, Hasegawa M, Matsuda Y, Inagami T (1991): Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351: 230–233

    Article  Google Scholar 

  • Sakurai T, Yanagisawa M, Takuma Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990): Cloning of a cDNA encoding a non-isopeptide-selective subtype of endothelin receptor. Nature 348: 732–735

    Article  Google Scholar 

  • Schwyzer R (1987): Membrane-assisted molecular mechanism of neurokinin receptor subtype selection. EMBO J 6: 2255–2259

    Google Scholar 

  • Shigemoto R, Yokota Y, Nakanishi S (1990): Cloning and expression of a rat neuromedin K receptor cDNA. J Biol Chem 265: 623–628

    Google Scholar 

  • Sibley DR, Strasser RH, Benovic JL, Kiefer D, Lefkowitz RJ(1988): Phosphorylation/ dephosphorylation of the 0-adrenergic receptor regulates its coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci USA 83: 9408–9412

    Google Scholar 

  • Spindel ER, Giladi E, Brehm P, Goodman RH, Segerson TP (1990): Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin releasing peptide hormone receptor. Mol Endocrinol 4: 1956–1963

    Article  Google Scholar 

  • Steedharan SP, Robichon A, Paterson KE, Goetel EJ (1991): Cloning and expression of the human vasoactive intestinal polypeptide receptor. Proc Natl Acad Sci USA 88: 4986–4990

    Article  Google Scholar 

  • Stockton JM, Birdsall NJM, Burgen ASV, Hulme EC (1983): Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23: 551–557

    Google Scholar 

  • Strader CD, Sigal IS, Candelor MR, Rands E, Hill WS, Dixon RGF (1988): Conserved aspartic acid residues 79 and 113 of the ß-adrenergic receptors have different roles in receptor function. J Biol Chem 263: 10267–10271

    Google Scholar 

  • Straub RE, Freeh GC, Joho RH, Gerschenghorn MC (1990): Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc Natl Acad Sci USA 87: 9514–9518

    Article  Google Scholar 

  • Venter JC, Fraser CM, Kerlavage AR, Buck MA (1989): Molecular biology of adrenergic and muscarinic cholinergic receptors. Biochem Pharmacol 38: 1197–1208

    Article  Google Scholar 

  • Vinson CR, Conover S, Adler PN (1989): A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338: 263–264

    Article  Google Scholar 

  • Vu T-H, Hung DT, Wheaton VI, Coughlin SR (1991): Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068

    Article  Google Scholar 

  • Wada E, Way J, Shapira H, Kusano K, Lebacq VAM, Coy D, Jensen R, Battery J (1991): cDNA cloning, characterization, and brain specific expression of a neuromedin-B-preferring bombesin receptor. Neuron 6: 421–430

    Google Scholar 

  • Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O’Hara P, and Mackay VL (1989): The STE4 and STE18 genes of yeast encode potential O and y subunits of the mating factor receptor coupled G-protein. Cell 56: 467–477

    Article  Google Scholar 

  • Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Scino S (1992): Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract and kidney. Proc Natl Acad Sci USA 89: 251–255

    Google Scholar 

  • Yokota Y, Sasi Y, Tanaka K, Fujiwara J, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S (1989): Molecular characterisation of a functional cDNA for rat substance P receptor. J Biol Chem 264: 17649–17652

    Google Scholar 

  • Young D, Waitches G, Birchmeier C, Fasano G, Wigler M (1986): Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45: 711–719

    Article  Google Scholar 

  • Young D, O’Neill K, Jessell TM, Wigler M (1988): Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proc Natl Acad Sci USA 85: 5339–5342

    Article  Google Scholar 

  • Yu L, Blumer KJ, Davidson N, Lester HA, Thorner J (1989): Functional expression of the yeast a-factor receptor in Xenopus oocytes. J Biol Chem 264: 20847–20850

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Poyner, D.R., Hanley, M.R. (1992). Molecular Biology of Peptide and Glycoprotein Hormone Receptors. In: Brann, M.R. (eds) Molecular Biology of G-Protein-Coupled Receptors. Applications of Molecular Genetics to Pharmacology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6772-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6772-7_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6774-1

  • Online ISBN: 978-1-4684-6772-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics