Molecular Biology of Peptide and Glycoprotein Hormone Receptors

  • David R. Poyner
  • Michael R. Hanley
Part of the Applications of Molecular Genetics to Pharmacology book series


Although over sixty mammalian peptides have been identified, their receptor actions are, with the notable exception of the atrial peptide family, mediated exclusively by G-protein-linked mechanisms (Hanley, 1989). The full spectrum of nonphotoreceptor G-protein mechanisms have been described for peptide signaling, including positive and negative regulation of adenylyl cyclase, stimulation of phospholipase C, and positive and negative regulation of ion channels (Table 9.1).


Adenylyl Cyclase Xenopus Oocyte Peptide Receptor Glycoprotein Hormone Tachykinin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990): Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732CrossRefGoogle Scholar
  2. Blumer KG, Rencke JE, Thorner J (1988): The STE 2 gene product is the ligand-binding component of the a-factor receptor of Saccharomyces cerevisiae. J Biol Chem 263: 10836–10842Google Scholar
  3. Bost KL, Blalock JE (1989): Preparation and use of complementary peptides. Methods Enzymol 168: 16–28CrossRefGoogle Scholar
  4. Bouvier M, Hausdorff WP, DeBlasi A, O’Dowd BF, Kobilka BK, Caron MG, Lefkowitz FJ (1988); Removal of phosphorylation sites from the ß 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 333: 370–373CrossRefGoogle Scholar
  5. Bunnemann B, Fuxe K, Metzger R, Mullins J, Jackson TR, Hanley MR, Ganten D (1990): Autoradiographic localization of MAS proto-oncogene mRNA in adult rat brain using in situ hybridization. Neurosci Lett 114: 147–153CrossRefGoogle Scholar
  6. Burgen ASV, Roberts GCK, and Feeney J (1975). Binding of flexible ligands to macromolecules. Nature 253: 753–755CrossRefGoogle Scholar
  7. Cheung GH, Sigal IS, Dixon RGJ, Strader CD (1989): Agonist-promoted sequestration of the ß2-adrenergic receptor requires regions involved in functional coupling with Gs. Mol Pharmacol 34: 132–138Google Scholar
  8. Chung FC, Wang CD, Potter PC, Venter JC, Fraser CM (1988): Site-directed mutagenesis and continuous expression of human ß-adrenergic receptors: Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J Biol Chem 263: 4052–4055Google Scholar
  9. Coughlin SR, Escobedo JA, Williams LT (1989): Role of phosphatidylinositol kinase in PDGF receptor signal transduction Science 243: 1191–1193CrossRefGoogle Scholar
  10. Curtis CAM, Wheatley M, Bansal S, Birdsall NGM, Eveleigh P, Peddar EK, Poyner DR, Hulme EC (1989): Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 264: 489–495Google Scholar
  11. Dam TV, Takeda Y, Krause JE, Escher E, Quirion R (1990): γ-Preprotachykinin- (72-92)-peptide amide: An endogenous preprotachykinin I gene-derived peptide that preferentially binds to neurokinin-2 receptors. Proc Natl Acad Sci USA 87: 246–256Google Scholar
  12. Dixon RGJ, Sigal ID, Candelore MR, Register RB, Scatterwood W, Rands E, Strader CD (1987): Structural features required for ligand binding to the ß-adrenergic receptor. EMBO J 6: 3269–3275Google Scholar
  13. Elton TS, Dion LD, Bost KL, Oparil S, Blalock JE (1988): Purification of an angiotensin II binding protein using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci USA 85: 2518–2552CrossRefGoogle Scholar
  14. Fraser CM, Chung FZ, Wang CD, Venter JD (1988): Site-directed mutagenesis of human ß-adrenergic receptors: Substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Proc Natl Acad Sci USA 85: 5478–5482CrossRefGoogle Scholar
  15. Goldstein A, Aronow L, Kalman S (1974): Principles of Drug Action, 2nd ed. New York: WileyGoogle Scholar
  16. Hagen DC, McCaffrey G, Sprague GF (1986): Evidence that the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene structure and implications for the structure of the presumed receptor. Proc Natl Acad Sci USA 83: 1418–1422CrossRefGoogle Scholar
  17. Hanley MR (1985): Peptide binding assays. In: Neurotransmitter Receptor Binding Yamamura HI, Enna SJ, Kuhar MJ, New York: Raven Press, 2nd ed, pp 91–102Google Scholar
  18. Hanley MR (1989): Neuropeptide receptors: Structure and transduction mechanisms. In: Hormones and Cell Regulation, Nunez J, Dumont JE, Denton R, London: John Libbey, Vol 13, pp 3–9Google Scholar
  19. Hanley MR (1990): Molecular and cellular characterisation of the MAS oncogene as a neural peptide receptor. In: Neuropeptides and Their Receptors, Schwartz TW, Hilsted LM, Rehfeld JF, Alfred Benzon Symp 29. Copenhagen: Munksga- ard, pp 325–329Google Scholar
  20. Hanley MR, Jackson T (1987): Substance K receptor. Nature 329: 766–767CrossRefGoogle Scholar
  21. Hanley MR, Cheung WT, Hawkins P, Poyner D, Benton HP, Blair L, Jackson TR, Goedert M (1990): The MAS oncogene as a neural peptide receptor: Expression, regulation and mechanism of action. Ciba Found Symp 150: 23–46Google Scholar
  22. Harada Y, Takahashi T, Kuno M, Nakayama K, Masu Y, Nakanishi S (1987): Expression of two different tachykinin receptors in Xenopus oocytes by exogenous mRNAs. J Neurosci 7: 3265–3273Google Scholar
  23. Hershey AD, Krause JE (1990): Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science 247: 958–962CrossRefGoogle Scholar
  24. Herskowitz I, Marsh L (1987): Conservation of a receptor/signal transduction system. Cell 50: 995–996CrossRefGoogle Scholar
  25. Herzog H, Hort YJ, Ball HJ, Hayes G, Shine J, Selbie LA (1992): A cloned human neuropeptide Y1 receptor couples to two different second messenger systems. Proc Natl Acad Sci USA In pressGoogle Scholar
  26. Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O’Hara PJ, Mulvihill ER, Aimers W, Hagen FS (1991): Cloning, expression and gene expression of a G-protein coupled glutamate receptor from rat brain. Science 252: 1318–1321CrossRefGoogle Scholar
  27. Ishihara T, Nakamura S, Yoshito K, Takahashi T, Takahashi K, Nagata S (1991): Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10: 1635–1641Google Scholar
  28. Jackson TR, Blair LAC, Marshall J, Goedert M, Hanley MR (1988): The mas oncogene encodes an angiotensin receptor. Nature 335: 43–440CrossRefGoogle Scholar
  29. Jackson TR, Hanley MR (1989): Tumour promotor 12-O-tetradecanoylphorbol 13-acetate inhibits mas/angiotensin receptor-stimulated inositol phosphate production and intracellular calcium elevation in the 401L-C3 neuronal cell line. FEBS Lett 251: 27–30CrossRefGoogle Scholar
  30. Jenness DD, Burkholder AC, Hartwell LN (1983): Binding of the a factor receptor. Cell 35: 521–529CrossRefGoogle Scholar
  31. Juppner H, Abou-Samra A-B, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF, Hock J, Potts JT, Kronenberg HM, Serge GV (1991): A G-protein linked receptor for parathyroid hormone and parathyroid hormone- related peptide. Science 254: 1024–1026CrossRefGoogle Scholar
  32. Keinanen KP, Rajaniemi HJ (1986): Rat ovarian lutropin receptor is a transmembrane protein. Biochemistry 239: 83–87Google Scholar
  33. Kim IC, Ascoli M, Segaloff DL (1987): Immunoprecipitation of the lutropin/ choriogonadotrophic receptor from biosynthetically labelled Leydig tumour cells. J Biol Chem 262: 470–477Google Scholar
  34. Konopka JB, Jenness DD, Hartwell LH (1988): The C-terminus of S. cerevisiae a-pheromone receptor mediates an adaptive responsive to pheromone. Cell 54: 609–620CrossRefGoogle Scholar
  35. Lefkowitz J, Kobilka BK, Caron MG (1989): The new biology of drug receptors. Biochem Pharmacol 38: 2941–2948CrossRefGoogle Scholar
  36. Libert F, Lefort A, Gerard C, Parmentier M, Perret J, Ludgate M, Dumont J, Vassart G (1989a): Cloning, sequence and expression of the human thyrotropin ( TSH) receptor: Evidence for the binding of autoantibodies. Biochem Biophys ResCommun 165: 150–1255Google Scholar
  37. Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhart C, Simons M-J, Dumont JE, Vassart G (1989b): Selective amplification and cloning of four new members of the G-protein-coupled receptor family. Science 244: 569–572CrossRefGoogle Scholar
  38. Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF, Lodish HF, Goldring SR (1991): Expression cloning of an adenylate cyclase coupled calcitonin receptor. Science 254: 1022–1024CrossRefGoogle Scholar
  39. Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ (1992): Cloning and characterisation of a vasopressin V2 receptor: Chromosomal localization of gene suggests link to hereditary diabetes insipidus. Nature In press.Google Scholar
  40. Loosfelt H, Misrahi M, Atger M, Salesse R, Thi M, Jolivet A, Guiochon-Mantel A, Sar S, Jallal B, Gamier J, Milgrom E (1989): Cloning and sequencing of porcine LH-hCG receptor cDNA: Variants lacking transmembrane domain. Science 245: 525–528CrossRefGoogle Scholar
  41. Macfarland KC, Sprengel R, Phillips HD, Kohler M, Rosemblit N, Nikolics K, Segaloff DL, Seeburg PH (1989): Lutropin-choriogonadotropin receptor: An unusual member of the G-protein-coupled receptor family. Science 245: 494–499CrossRefGoogle Scholar
  42. Marsh L, Herskowitz I. (1988): STE2 protein of Saccharomyces kluyveri is a member of the rhodopsin/ß-adrenergic receptor family and is responsible for recognition of the peptide ligand α factor. Proc Natl Acad Sci USA 85: 3855–3859CrossRefGoogle Scholar
  43. Masu Y, Nakayama K, Yamaki H, Harada Y, Kuno M, Nakanishi S (1987): cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329: 836–838Google Scholar
  44. McEachern AE, Shelton ER, Shakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K (1991): Expression cloning of a rat B2 receptor. Proc Natl Acad Sci USA 88: 7724–7728CrossRefGoogle Scholar
  45. Misrahi M, Loosefelt H, Atger M, Sar S, Guiochon-Mantel A, Milgrom E (1990): Cloning sequencing and expression of human TSH receptor. Biochem Biophys Res Commun 166: 394–403CrossRefGoogle Scholar
  46. Morel A, O’Carroll AM, Brownstein MI, Lolait SJ, (1992): Molecular cloning and expression of a rat Via arginine vasopressin receptor. Nature In pressGoogle Scholar
  47. Mulchahey JJ, Neil JD, Dion LD, Bost KL, Blalock JE (1986): Antibodies to the binding site of the receptor for lutenizing hormone releasing hormone (LHRH): Generation with a synthetic decapeptide encoded by an mRNA complementary to LHRH mRNA. Proc Natl Acad Sci USA 83: 9714–9718CrossRefGoogle Scholar
  48. Nagayama Y, Kaufman KD, Seto P, Rapoport B (1989): Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Commun 165: 1184–1190CrossRefGoogle Scholar
  49. Nakafuku M, Itoh H, Nakamura S, Kaziro Y (1987): Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the a-subunit of mammalian G-proteins. Proc Natl Acad Sci USA 84: 2140–2144CrossRefGoogle Scholar
  50. Nakayama N, Miyajima A, Arai K (1985): Nucleotide sequences of STE 2 and STE 3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4: 2643–2648Google Scholar
  51. O’Dowd BJ, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ (1988): Site-directed mutagenesis of the cytoplasmic domains of the human ß2-adrenergic receptor: Localization of regions involved in G-protein receptor coupling. J Biol Chem 263: 15985–15992Google Scholar
  52. O’Dowd BJ, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989): Palmi-toylation of the human adrenergic receptor. J Biol Chem 264: 7564–7569Google Scholar
  53. Parmentier M, Libert F, Maenhaut C, Lefort A, Gerard C, Perret J, Van Sande J, Dumont J, Vassart G (1989): Molecular cloning of the thyrotropin receptor. Science 246: 1620–1622CrossRefGoogle Scholar
  54. Payan DG (1985): Receptor-mediated mitogenic effects of substance P on cultured muscle cells. Biochem Biophys Res Commun 130: 104–109CrossRefGoogle Scholar
  55. Peach M (1977): Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol Rev 57: 313–370Google Scholar
  56. Poyner DR, Hawkins PT, Benton H, Hanley MR (1990): Changes in inositol lipids and phosphates after stimulation of the MAS-transfected NG115-401L-C3 cell line by mitogenic and non-mitogenic stimuli. Biochem J 271: 605–611Google Scholar
  57. Rabin M, Birnbaum D, Young D, Birchmeier C, Wigler M, Ruddle FH (1987): Human Resl and MAS1 oncogene located in regions of chromosome 6 associated with tumour-specific rearrangements. Oncogene Res 1: 169–178Google Scholar
  58. Saffroy M, Beaujounan JC, Torrens Y, Besseyre J, Bergström L, Glowinski J (1988): Localisation of tachykinin binding sites (NK1, NK2, NK3 ligands) in the rat brain. Peptides 9: 227–241CrossRefGoogle Scholar
  59. Sasai Y, Nakanishi S (1989): Molecular characterisation of rat substance K receptor and its mRNA. Biochem Biophys Res Commun 165: 695–702CrossRefGoogle Scholar
  60. Sasaki K, Yamono Y, Bardhan S, Iwai N, Murray J J, Hasegawa M, Matsuda Y, Inagami T (1991): Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351: 230–233CrossRefGoogle Scholar
  61. Sakurai T, Yanagisawa M, Takuma Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990): Cloning of a cDNA encoding a non-isopeptide-selective subtype of endothelin receptor. Nature 348: 732–735CrossRefGoogle Scholar
  62. Schwyzer R (1987): Membrane-assisted molecular mechanism of neurokinin receptor subtype selection. EMBO J 6: 2255–2259Google Scholar
  63. Shigemoto R, Yokota Y, Nakanishi S (1990): Cloning and expression of a rat neuromedin K receptor cDNA. J Biol Chem 265: 623–628Google Scholar
  64. Sibley DR, Strasser RH, Benovic JL, Kiefer D, Lefkowitz RJ(1988): Phosphorylation/ dephosphorylation of the 0-adrenergic receptor regulates its coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci USA 83: 9408–9412Google Scholar
  65. Spindel ER, Giladi E, Brehm P, Goodman RH, Segerson TP (1990): Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin releasing peptide hormone receptor. Mol Endocrinol 4: 1956–1963CrossRefGoogle Scholar
  66. Steedharan SP, Robichon A, Paterson KE, Goetel EJ (1991): Cloning and expression of the human vasoactive intestinal polypeptide receptor. Proc Natl Acad Sci USA 88: 4986–4990CrossRefGoogle Scholar
  67. Stockton JM, Birdsall NJM, Burgen ASV, Hulme EC (1983): Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23: 551–557Google Scholar
  68. Strader CD, Sigal IS, Candelor MR, Rands E, Hill WS, Dixon RGF (1988): Conserved aspartic acid residues 79 and 113 of the ß-adrenergic receptors have different roles in receptor function. J Biol Chem 263: 10267–10271Google Scholar
  69. Straub RE, Freeh GC, Joho RH, Gerschenghorn MC (1990): Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc Natl Acad Sci USA 87: 9514–9518CrossRefGoogle Scholar
  70. Venter JC, Fraser CM, Kerlavage AR, Buck MA (1989): Molecular biology of adrenergic and muscarinic cholinergic receptors. Biochem Pharmacol 38: 1197–1208CrossRefGoogle Scholar
  71. Vinson CR, Conover S, Adler PN (1989): A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338: 263–264CrossRefGoogle Scholar
  72. Vu T-H, Hung DT, Wheaton VI, Coughlin SR (1991): Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068CrossRefGoogle Scholar
  73. Wada E, Way J, Shapira H, Kusano K, Lebacq VAM, Coy D, Jensen R, Battery J (1991): cDNA cloning, characterization, and brain specific expression of a neuromedin-B-preferring bombesin receptor. Neuron 6: 421–430Google Scholar
  74. Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O’Hara P, and Mackay VL (1989): The STE4 and STE18 genes of yeast encode potential O and y subunits of the mating factor receptor coupled G-protein. Cell 56: 467–477CrossRefGoogle Scholar
  75. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Scino S (1992): Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract and kidney. Proc Natl Acad Sci USA 89: 251–255Google Scholar
  76. Yokota Y, Sasi Y, Tanaka K, Fujiwara J, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S (1989): Molecular characterisation of a functional cDNA for rat substance P receptor. J Biol Chem 264: 17649–17652Google Scholar
  77. Young D, Waitches G, Birchmeier C, Fasano G, Wigler M (1986): Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45: 711–719CrossRefGoogle Scholar
  78. Young D, O’Neill K, Jessell TM, Wigler M (1988): Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proc Natl Acad Sci USA 85: 5339–5342CrossRefGoogle Scholar
  79. Yu L, Blumer KJ, Davidson N, Lester HA, Thorner J (1989): Functional expression of the yeast a-factor receptor in Xenopus oocytes. J Biol Chem 264: 20847–20850Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • David R. Poyner
  • Michael R. Hanley

There are no affiliations available

Personalised recommendations