The 5-HT1A Receptor: From Molecular Characteristics to Clinical Correlates

  • John R. Raymond
  • Salah El Mestikawy
  • Annick Fargin
Part of the Applications of Molecular Genetics to Pharmacology book series


The past decade has seen a remarkable growth in our understanding of the pharmacology and physiology of the various receptors for serotonin (5-hydroxytryptamine, 5-HT). Since 1979, when radioligand binding techniques were used to distinguish subtypes of 5-HT binding sites (Peroutka and Snyder, 1979), no less than ten subtypes of 5-HT receptors have been characterized (Richardson and Engel, 1986; Bradley et al., 1986; Mawe et al., 1986; Heuring and Peroutka, 1987; Dumuis et al., 1988b; Leonhardt et al., 1989; Conner and Monsour, 1990). However, the biochemical characterization of these receptors has been hampered by the lack of selective radioligands and/or cell lines expressing single well-characterized receptor subtypes.


Adenylyl Cyclase Arachidonic Acid Release Photoaffinity Label Canine Basilar Artery Serotonergic Dorsal Raphe Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian GK, Lakoski JM (1984): Hyperpolarization of serotonergic neurons by serotonin and LSD: Studies in brain slices showing increased K+ -conductance. Brain Res 305: 181–185Google Scholar
  2. Albert P, Zhou QY, Van Tol HHM, Bunzow JR, Civelli O (1990): Cloning, mRNA distribution and functional expression of the 5-HT1A receptor gene. J Biol Chem 265: 5825–5832Google Scholar
  3. Amlaiky N, Caron MG (1985): Photoaffinity labeling of the D2-dopamine receptor using a novel high affinity radioiodinated probe. J Biol Chem 260: 1983–1986Google Scholar
  4. Andrade R, Malenka RC, Nicoll R (1986): A G protein couples serotonin and GABAb receptors to the same channels in hippocampus. Science 234: 1261–1265Google Scholar
  5. Andrade R, Nicoll R (1987a): Novel anxiolytics discriminate between postsynaptic serotonin receptors of the rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 336: 5–10Google Scholar
  6. Andrade R, Nicoll R (1987b): Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond) 394: 99–124Google Scholar
  7. Asarch KB, Shih JC (1987): Solubilization of serotonin1a and serotonin1b binding sites from bovine brain. J Neurochem 48: 1494–1501Google Scholar
  8. Ashkenazi A, Winslow JW, Peralta EG, Peterson GL, Schimerlik MI, Capon DJ, Ramachandran J (1987): An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238: 672–675Google Scholar
  9. Beck SG, Clarke WP, Goldfarb J (1985): Spiperone differentiates multiple 5- hydroxytryptamine responses in rat hippocampal slices in vitro. Eur J Pharmacol 116: 195–197Google Scholar
  10. Blackshear PB (1988): Approaches to the study of protein kinase C involvement in signal transduction. Am J Med Sci 31: 231–240Google Scholar
  11. Blier P, De Montigny C (1990): Electrophysiological investigations of the adaptive response of the 5-HT system to the administration of 5-HT1A receptor agonists. J Cardiovasc Pharmacol 15 (suppl 7): S42–S48Google Scholar
  12. Bockaert J, Dumuis A, Bouhelal R, Sebben M, Cory RN (1987): Piperazine derivatives, including the putative anxiolytic drugs buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedebergs Arch Pharmacol 335: 588–592Google Scholar
  13. Bouvier M, Hnatowich M, Collins S, Kobilka BK, DeBlasi A, Lefkowitz RJ, Car on MG (1988): Expression of a human cDNA encoding the ß2-adrenergic receptor in Chinese hamster fibroblasts (CHW): Functionality and regulation of the expressed receptors. Mol Pharmacol 33: 133–139Google Scholar
  14. Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecherane EJ, Richardson BP, Saxena PR (1986): Nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576Google Scholar
  15. Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988): Cloning and expression of a rat D2-dopamine receptor cDNA. Nature 336: 783–787Google Scholar
  16. Carli M, Samanin R (1988): Potential anxiolytic properties of 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist. Psychopharmacology 94: 84–91Google Scholar
  17. Claustre Y, Bénavides J, Scatton B (1988): 5-HT1A receptor agonists inhibit carbachol-induced stimulation of phosphoinositide turnover in the rat hippocampus. Eur J Pharmacol 149: 149–153Google Scholar
  18. Colino A, Halliwell JV (1986): 8-OH-DPAT is a strong antagonist of 5-HT action in rat hippocampus. Eur J Pharmacol 130: 151–152Google Scholar
  19. Colino A, Halliwell JV (1987): Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328: 73–77Google Scholar
  20. Conner DA, Mansour TE (1990): Serotonin receptor-mediated activation of adenylate cyclase in the neuroblastoma NCB.20: A novel 5-hydroxytryptamine receptor. Mol Pharmacol 37: 742–751Google Scholar
  21. Cooper SJ, Abbott A (1988): Clinical Psychopharmacology may benefit from new advances in 5-HT pharmacology. Trends Pharmacol Sci 9: 269–271Google Scholar
  22. Cornfield LJ, Nelson DL, Monroe PJ, Taylor EW, Nikam SS (1988): Use of forskolin stimulated adenylate cyclase in rat hippocampus as a screen for compounds that act through 5-HT1A receptors. Proc West Pharmacol Soc 31: 265–267Google Scholar
  23. Cornfield LJ, Nelson DL, Taylor EW, Martin AR (1989): MDL 73005: Partial agonist at the 5-HT1A receptor negatively linked to adenylate cyclase. Eur J Pharmacol 173: 189–192Google Scholar
  24. Cossery JM, Gozlan H, Spampinato U, Perdicakis C, Guillaumet G, Pichat L, Hamon M (1987): The selective labelling of central 5-HT1A receptor binding sites by [3H]5-methoxy-3-(di-n-propylamino) chroman. Eur J Pharmacol 140: 143–155Google Scholar
  25. Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, et al. (1990): Multiple second messenger pathways of «-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem 265: 63–69Google Scholar
  26. Dalton DW, Feniuk W, Humphrey PPA (1985): The mechanism of the hypotensive action of 5-carboxyamidotryptamine in conscious DOCA-salt hypertensive rats. Br J Pharmacol 86: 737 PGoogle Scholar
  27. Daval G, Vergé D, Basbaum AI, Bourgoin S, Hamon M (1987): Autoradiographic evidence of serotonin 1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci Lett 83: 71–76Google Scholar
  28. De Vivo M, Maayani S (1986): Characterization of the 5-HT1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238: 248–253Google Scholar
  29. Devoino LV, Ilyutchenok R Yu (1968): Influence of some drugs on the immune response. Eur J Pharmacol 4: 449–456Google Scholar
  30. Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986): Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79Google Scholar
  31. Dohlman HG, Caron MG, DeBlasi A, Frielle T, Lefkowitz RJ (1990): A role of extracellular disulfided bonded cysteines in the ligand binding function of the ß2 adrenergic receptor. Biochemistry 29: 2335–2342Google Scholar
  32. Dompert WU, Glaser T, Traber J (1985): [3H]-TVX Q 7821: identification of 5-HT1 binding sites as target for a novel putative anxiolytic. Naunyn-Schmiedebergs Arch Pharmacol 328: 467–470Google Scholar
  33. Dourish CT, Ahlenius A, Hutson PL, (1987): Brain 5-HT 1A. Chichester, England: Ellis HorwoodGoogle Scholar
  34. Dumuis A, Sebben M, Bockaert J (1988a): Pharmacology of 5-hydroxytrypta- mine1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol Pharmacol 33: 176–186Google Scholar
  35. Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J (1988b): A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the CNS. Mol Pharmacol 34: 880–887Google Scholar
  36. El Mestikawy S, Cognard C, Gozlan H, Hamon M (1988): Pharmacological and biochemical characterization of rat hippocampal 5-hydroxytryptamine1A receptors solubilized by 3[3-(cholamidopropyl)dimethylammonio)]l-propane sulfonate (CHAPS). J Neurochem 51: 1031–1040Google Scholar
  37. El Mestikawy S, Taussig D, Gozlan H, Emerit MB, Ponchant M, Hamon M (1989): Chromatographic analysis of the 5-HT1A receptor solubilized from the rat hippocampus. J Neurochem 53: 1555–1566Google Scholar
  38. El Mestikawy S, Riad M, Laporte A-M, Vergé D, Daval G, Gozlan H, Hamon M (1990): Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci Lett 118: 189–192Google Scholar
  39. El Mestikawy S, Fargin A, Raymond JR, Gozlan H, Hnatowich M (1991): The 5-HT1A receptor: An overview of recent advances. Neurochem Res 16: 1–10Google Scholar
  40. Emerit MB, El Mestikawy S, Gozlan H, Cossery JM, Besselièvre R, Marquet A, Hamon M (1987): Identification of the 5-HT1A binding subunit in rat brain membranes using the photoaffinity probe [3H]8-methoxy-2-[AT-rt-propyl, Af-3-(2- nitro-4-azidophenyl)aminopropyl]tetralin. J Neurochem 49: 373–380Google Scholar
  41. Emerit MB, Miquel MC, Gozlan H, Hamon M (1991): The GTP-insensitive component of high affinity [3H]-8-hydroxy-2(di-n-propylamino)tetralin binding in the rat hippocampus corresponds to an oxidized state of the 5-HT1A receptor J Neurochem 4956: 1705–1716Google Scholar
  42. Ennis C, Kemp JD, Cox B (1981): Characterization of inhibitory 5-HT receptors that modulate dopamine release in the striatum. J Neurochem 36: 1515–1520Google Scholar
  43. Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Lefkowitz RJ, Caron MG (1988): The genomic clone G-21 which resembles a ß-adrenergic receptor sequence encodes the human 5-HT1A receptor. Nature 335: 358–360Google Scholar
  44. Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989): Second messenger linkages of the 5-HT1A receptor expressed in eukaryotic cells. J Biol Chem 264: 14848–14852Google Scholar
  45. Fargin A, Yamamoto K, Cotecchia S, Goldsmith PK, Spiegel AM, Lapetina EG, Caron MG, Lefkowitz RJ (1991): Dual coupling of the cloned 5-HT1A receptor to both adenylyl cyclase and phospholipase C is modulated by the same Gi protein. Cell Signalling 3: 547–557Google Scholar
  46. Finch L (1974): Vascular reactivity in hypertensive rats after treatment with antihypertensive agents. Life Sci 15: 1827–1836Google Scholar
  47. Fitzgerald L, Titeler M, Glennon RA, Yocca F (1989): Tritiated NAN-190 and tritiated BMY-7378: Antagonist radioligand probes of the brain 5-HT1A receptor. Neurosci Abstr 15: 422Google Scholar
  48. Fozard JR, Kilbinger H (1985): 8-OH-DPAT inhibits transmitter release from guinea-pig enteric cholinergic neurones by activating 5-HT1A receptors. Br J Pharmacol 86: 601 PGoogle Scholar
  49. Fraser CM (1989): Site-directed mutagenesis of ß-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J Biol Chem 264: 9266–9270Google Scholar
  50. Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987): Cloning of the cDNA for the human ß1-adrenergic receptor. Proc Natl Acad Sci USA 84: 7920–7924Google Scholar
  51. Frielle T, Daniel K, Caron MG, Lefkowitz RJ (1988): Structural basis of ß-adrenergic receptor subtype specificity studied with chimeric ß12-adrenergic receptors. Proc Natl Acad Sci USA 85: 9494–9498Google Scholar
  52. Gallagher TK, Wang HH (1988): Purification and reconstitution of serotonin receptors from bovine brain. Proc Natl Acad Sci USA 85: 2378–2382Google Scholar
  53. Gartride SE, Cowen PJ, Hjorth S (1990): Effecfts of MDL 73005 on central pre- and postsynaptic 5-HT1A receptor function in the rat in vivo. Eur J Pharmacol 191: 391–400Google Scholar
  54. Glaser T, Traber J (1985): Binding of the putative anxiolytic TVX Q-7821 to hippocampal 5-hydroxytryptamine (5-HT) recognition sites. Naunyn-Schmiedebergs Arch Pharmacol 329: 211–215Google Scholar
  55. Goodwin GM, Green AR (1985): A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84: 743–753Google Scholar
  56. Gozlan H, El Mestikawy S, Pichat S, Glowinski J, Hamon M (1983): Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305: 140–142Google Scholar
  57. Gozlan H, Emerit MB, Hall MD, Nielsen M, Hamon M (1987): In situ molecular sizes of the various types of 5-HT binding sites in the rat brain. Biochem Pharmacol 35: 1891–1897Google Scholar
  58. Gozlan H, Ponchant M, Daval G, Verge G, Menard F, Vanhove A, Beaucort JP, Hamon M (1988a): 125I-Bolton-Hunter-8-methoxy-2-[N-propyl-7V-propylamino]- tetralin as a new selective radioligand of 5-HT1A sites in the rat brain. J Pharmacol Exp Ther 244: 751–759Google Scholar
  59. Gozlan H, Emerit MB, El Mestikawy S, Cossery JM, Marquet A, Besselevièvre, Hamon M (1988b): Photoaffinity labeling and solubilization of the central 5-HT1A receptor binding site. J Recept Res 7: 195–221Google Scholar
  60. Hall MD, El Mestikawy S, Emerit MB, Pichat L, Hamon M, Gozlan H (1985): [3H]-8-OH-2-di-n-propylamino]tetralin binding to pre- and post-synaptic 5-hydroxytryptamine binding sites in various regions of the rat brain. J Neurochem 44: 1685–1692Google Scholar
  61. Hamon M, Fattaccini CM, Adrien J, Gallissot MC, Martin P, Gozlan H (1988): Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-HT1A agonists with potential anxiolytic properties. J Pharmacol Exp Ther 246: 745–752Google Scholar
  62. Hamon M, Emerit MB, El Mestikawy S, Gallissot MC, Gozlan H (1990): Regional differences in the transduction mechanisms of serotonin receptors in the mammalian brain. In: Cardiovascular Pharmacology of 5-HT: Prospective Therapeutic Applications, Saxena PR, Wallis D, Woute W, Gevan P eds. Dordrecht: Kluwer Acad Publ, pp. 41–59Google Scholar
  63. Hartig PR (1989): Molecular biology of 5-HT receptors. Trends Pharmacol Sci 10: 64–69Google Scholar
  64. Hellstrand K, Hermodsson S (1987): Role of serotonin in the regulation of human natural killer cell cytotoxicity. J Immunol 139: 869–875Google Scholar
  65. Hellstrand K, Hermodsson S (1987): Enhancement of human natural killer cell cytotoxicity by serotonin: Role of non-T/CD16+ NK cells, accessory monocytes, and 5-HT1A receptors. Cell Immunol 127: 199–14Google Scholar
  66. Henning M, Rubenson A (1971): Effects of 5-hydroxytryptophan on arterial blood pressure, body temperature and tissue monoamines in the rat. Acta Pharmacol Toxicol 29: 145–154Google Scholar
  67. Herrick-Davis K, Titeler M (1988): [3H]-Spiroxatrine, a 5-HT1A radioligand with agonist binding properties. J Neurochem 50: 528–533Google Scholar
  68. Heuring RE, Peroutka SJ (1987): Characterization of a novel [3H]5- hydroxytryptamine binding site in bovine brain membranes. J Neurosci 7: 894–903Google Scholar
  69. Hibert M, Moser P (1990): MDL-72382 and MDL-73005, novel, potent and selective 5-HT1A receptor ligands with different pharmacological properties. Drugs Future 15: 159–170Google Scholar
  70. Hjorth S, Sharp T (1990) Mixed agonist-antagonist properties of NAN-190 at 5-HT1A receptors behavioral and in-vivo brain microdialysis studies. Life Sci 46: 955–963Google Scholar
  71. Hoyer D, Engel G, Kalkman HO (1985a): Characterization of the 5-HT1B recog-nition site in rat and pig brain membranes: Binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol 118: 1–12Google Scholar
  72. Hoyer D, Engel G, Kalkman HO (1985b): Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, and [3H]mesulergine. Eur J Pharmacol 118: 13–23Google Scholar
  73. Hoyer D, Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376: 85–96Google Scholar
  74. Hoyer D (1989): 5-Hydroxytryptamine receptors and effector coupling mechanisms in peripheral tissues. In: Peripheral Actions of 5-HT, Fozard JR, ed. London: Oxford University Press, pp 72–99Google Scholar
  75. Hutson PH, Dourish CT, Curzon G (1986): Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. Eur J Pharmacol 129: 347–352Google Scholar
  76. Hutson PH, Donohoe TP, Curzon G (1987): Hypothermia induced by the putative 5-HT1A receptor agonists LY 165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol 143: 221–228Google Scholar
  77. Inei JR, Meyerson LR (1988): The 5-HT1A receptor probe [3H]-8-OH-DPAT labels the 5-HT transporter in human platelets. Life Sci 42: 311–320Google Scholar
  78. Invernizzi RW, Cervo L, Samanin R (1988): 8-Hydroxy-2-(di-n-propylamin) tetralin, a selective serotonin 1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27: 515–518Google Scholar
  79. Joels M, Shinnick-Gallagher P, Gallagher JP (1987): Effect of serotonin and serotonin analogues on passive membrane properties of lateral septal neurons in vitro. Brain Res 417: 99–107Google Scholar
  80. Kalkman HO, Engel G, Hoyer D (1984): Three distinct subtypes of serotonergic receptors mediate the triphasic blood pressure response to serotonin in rats. J Hypertension 2 (suppl 3): 143–145Google Scholar
  81. Karnik SS, Sakmar TP, Chen H-B, Khorana HG (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 85: 8459–8463Google Scholar
  82. Karschin A, Ho BY, LaBarca C, Elroy-Stein O, Moss B, Davidson N, Lester H (1991): Heterologously expressed serotonin 1A receptors couple to muscarinic K + channels in heart. Proc Natl Acad Sci USA 88: 5694–5698Google Scholar
  83. Kennett GA, Marcou M, Dourish CT, Curzon G (1987): Single administration of 5-HT1A agonists decreases 5-HT1A presynaptic, but not postsynaptic receptormediated responses: Relationship to antidepressant-like action. Eur J Pharmacol 138: 53–60Google Scholar
  84. Kilbinger H, Pfeuffer-Friedrich I (1985): Two types of receptors for 5-hydroxytryptamine on the cholinergic nerves of the guinea-pig myenteric plexus. Br J Pharmacol 85: 529–539Google Scholar
  85. Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng T, Francke U, Caron MG, Lefkowitz RJ (1987a): cDNA for the human ß2-adrenergic receptor: A protein with multiple membrane-spanning domains encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84: 46–50Google Scholar
  86. Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987b): Identification of an intronless gene which encodes a potential member of the family of G protein-coupled receptors. Nature 329: 75–79Google Scholar
  87. Kobilka BK, Kobilka TS, Daniel KW, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric α22-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240: 1310–1316Google Scholar
  88. Kwong LL, Smith ER, Davidson JM, Peroutka SJ (1986): Differential interactions of “prosexual” drugs with 5-hydroxytryptamine1A and α2-adrenergic receptors. Behav Neurosci 100: 664–668Google Scholar
  89. Kyte J, Doolittle RF (1982): A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132Google Scholar
  90. Lanier SM, Homey CJ, Patenaude C, and Graham RM (1988): Identification of structurally distinct α2-adrenergic receptors. J Biol Chem 263: 14491–14496Google Scholar
  91. Leonhardt S, Herrick-Davis K, Titeler M (1989): Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: Interaction with a GTP-binding protein. JNeurochem 53: 465–471Google Scholar
  92. Lespinats G, Bonnett M, Tlouzeau S, Burtin C (1984): Enhancement by serotonin of intra-tumour penetration of spleen cells. Br J Cancer 50: 545–547Google Scholar
  93. Leysen JE, Tollenaere JP, Koch MHJ, Laduron P (1977): Differentiation of opiate and neuroleptic receptor binding in rat brain. Eur J Pharmacol 43: 253–267Google Scholar
  94. Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1979): Serotonergic component of neuroleptic receptors. Nature 272: 169–171Google Scholar
  95. Leysen JE (1989): The use of 5-HT receptor agonists and antagonists for the characterization of their respective sites. In: Neuromethods, Neuropharmacology II: Drugs as Tools in Neurotransmitter Research, Boulton AA, Baker GB, Jourio AV, Clifton, N.J.: Humana Press, pp 299–350Google Scholar
  96. Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, Simons M-J, Dumont JE, Vassart, G (1989): Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244: 569–572Google Scholar
  97. Limbird LE (1988): Receptors linked to inhibition of adenylate cyclase: Additional signaling mechanisms. FASEB J 2: 2686–2695Google Scholar
  98. Liu YF, Albert PR (1991): Cell-specific signaling of the 5-HT1A receptor. J Biol Chem 266: 23689–23697Google Scholar
  99. Lucki I, Nobler MS, Frazer A (1983): Differential actions of serotonin antagonists on two behavioral models of seroronin receptor activation in the rat. J Pharmacol Exp Ther 228: 133–139Google Scholar
  100. Makman MH, Dvorkin B, Crain SM (1988): Modulation of adenylate cyclase activity of mouse spinal cord-ganglion expiants by opioids, serotonin and pertussis toxin. Brain Res 445: 303–313Google Scholar
  101. Mangel A, Raymond JR, Fitz JG (1992): Co-regulation of high conductance anion channels by GTP-binding proteins in CHO cells. SubmittedGoogle Scholar
  102. Marcinkiewicz M, Vergé D, Gozlan H, Pichat L, Hamon M (1984): Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291: 159–163Google Scholar
  103. Markstein R, Hoyer D, Engel G (1986): 5-HT1A receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 333: 335–341Google Scholar
  104. Martin KF, Mason R (1987): Ipsapirone is a partial agonist at 5-hydroxytryptamine1A (5-HT1A) receptors in the rat hippocampus: Electrophysiological evidence. Eur J Pharmacol 141: 479–483Google Scholar
  105. Mawe GM, Branchek TA, Gershon MD (1986): Peripheral neural serotonin receptors: Identification and characterization with specific antagonists and agonists. Proc Natl Acad Sci USA 83: 9799–9803Google Scholar
  106. McCall RB, Patel BN, Harris LT (1987): Effects of serotonin 1 and 2 receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity. J Pharmacol Exp Ther 242: 1152–1159Google Scholar
  107. Middlemiss DN, Neill J, Tricklebank MD (1985): Subtypes of the 5-HT receptor involved in hypothermia and forepaw treading produced by 8-OH-DPAT. Br J Pharmacol 85: 25 I PGoogle Scholar
  108. Middlemiss DN, Fozard JR (1983): 8-OH-2-(di-n-propylamino)tetralin discriminates between subtypes of 5-HT recognition sites. Eur J Pharmacol 90: 151–153Google Scholar
  109. Middleton JP, Raymond JR, Whorton ARR, Dennis VW (1990): Short-term regulation of Na+/K + adenosine triphosphatase by recombinant human serotonin 5-HT1A receptor expressed in HeLa cells. J Clin Invest 86: 1799–1805Google Scholar
  110. Minchin MCW, Godfrey PP, McClue SJ, Young MM (1985): 8-OH-DPAT stimulates inositol phospholipid breakdown in rat cerebral cortical slices. J Neurochem 44(suppl):S49Google Scholar
  111. Mir AK, Hibert M, Tricklebank MD, Middlemiss DN, Kidd EJ, Fozard JR (1988): MDL 72832: A potent and stereoselective ligand at central and peripheral 5-HT1A receptors. Eur J Pharmacol 149: 107–120Google Scholar
  112. Moon SL, Taylor DP (1985): In vitro autoradiography of 3H-buspirone and 3H-2-deoxyglucose after buspirone administration. Soc Neurosci Abstr 11: 114Google Scholar
  113. Moser PC, Ticklebank MD, Middlemiss DN, Mir AK, Hibert MF and Fozard JR (1990): Characterization of MDL-73005 as a 5-HT1A selective ligand and its effects in animal models of anxiety: Comparison with buspirone, 8-hydroxy- DPAT and diazepam. Br J Pharmacol 99: 343–349Google Scholar
  114. Müller-Schwenitzer E, Engel G (1983): Evidence for mediation by 5-HT2 receptors of 5-hydroxytryptamine-induced contraction of canine basilar artery. Naunyn-Schmiedebergs Arch Pharmacol 327: 18–22Google Scholar
  115. Nelson DL, Monroe PJ, Lambert G, Yamamura HI (1987): [3H]-Spiroxatrine labels serotonin 1A-like sites in the rat hippocampus. Life Sci 41: 1567–1576Google Scholar
  116. Newberry NR, Priestly T (1988): A 5-HTl-like receptor mediates a pertussis toxin-sensitive inhibition of rat ventromedial hypothalamic neurones in vitro. Br J Pharmacol 95: 6–8Google Scholar
  117. Niemegeers CJE, Verbruggen FJ, Van Neuten JM, Janssen PA J (1964): Spiroxamide (R 5188): A new compound producing morphine-like and chlorpromazine- like effects in animals. Int J Neuropharmacol 2: 349–354Google Scholar
  118. Norman AB, Battaglia G, Creese I (1985): [3H]WB4101 labels the 5-HT1A receptor subtype in rat brain. Mol Pharmacol 28: 487–494Google Scholar
  119. O’Dowd BF, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989): Palmitoylation of the human ß 2-adrenergic receptor. J Biol Chem 264: 7564–7569Google Scholar
  120. Oliveras JL, Redjemi F, Guibaud G, Besson JM (1975): Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145Google Scholar
  121. Ovchinnikov YA, Adulaev NG, Bogachuk AS (1988): Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230: 1–5Google Scholar
  122. Page IH (1952): The vascular action of natural serotonin, 5- and 7-hydroxytryptamine and tryptamine. J Pharmacol Exp Ther 105: 58–73Google Scholar
  123. Palacios JM, Pazos A, Hoyer D (1987): Characterization and mapping of 5-HT1A sites in the brain of animals and man. In: Brain 5-HT1A Receptors. Dourish CT, Ahlenius A, Hutson PH, eds. Chichester: Ellis Horwood, pp 67–81Google Scholar
  124. Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in the human brain. III. Autoradiographic mapping serotonin-1 receptors. NeuroScience 21: 97–122Google Scholar
  125. Pedigo NW, Yamamura HI, Nelson DL (1981): Discrimination of multiple [3H]-5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226Google Scholar
  126. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran JS, Capon DJ (1988): Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334: 434–437Google Scholar
  127. Peroutka SJ, Snyder SH (1979): Multiple serotonin receptors: Differential binding of [3H]-5-hydroxytryptamine, [3H]-lysergic acid diethylamide and [3H]-spiroperidol. Mol Pharmacol 16: 687–699Google Scholar
  128. Peroutka SJ, Huang S, Allen GS (1986): Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther 237: 901–906Google Scholar
  129. Peroutka SJ (1987a): Serotonin receptors. In: Psychopharmacology: The Third Generation of Progress, Meltzer H, ed. New York: Raven Press, pp 303–311Google Scholar
  130. Peroutka SJ, Mauk MD, Kocsis JD (1987b): Modulation of hippocampal neuronal activity by 5-hydroxytryptamine and 5-hydroxytryptamine1A selective drugs. Neuropharmacology 26: 139–146Google Scholar
  131. Pfeuffer-Friedrich I, Kilbinger H (1985): The effect of LSD in the guinea-pig ileum. Inhibition of acetylcholine release and stimulation of smooth muscle. Naunyn- Schmiedebergs Arch Pharmacol 331: 311–315Google Scholar
  132. Przeglinksi E, Ismaiel AM, Chojnacka-Wojcik B, Budziszewska B, Tatarcynska D, Blaszcynska E (1990): The behavioral, but not the hypothermic or cortisone response to 8-hydroxy-2-(di-N-propylamino)-tetralin, is antagonized by NAN-190 in the rat. Neuropharmacology 29: 521–526Google Scholar
  133. Ransom RW, Asarch KB, Shih J (1986a): [3H]l-[2-(4-aminophenyl)ethyl]-4-(3- trifluoromethylphenyl)piperazine: A selective radioligand for 5-HT1A receptors in rat brain. J Neurochem 46: 68–75Google Scholar
  134. Ransom RW, Asarch KB, Shih J (1986b): Photoaffinity labeling of the 5-hydroxytryptamine1A receptor in rat hippocampus. J Neurochem 47: 1066–1072Google Scholar
  135. Raymond JR, Fargin A, Lohse M, Senogles S, Regan JW, Lefkowitz RJ, Caron MG (1989a): Identification of the ligand binding subunit of the human 5-HT1A receptor. Mol Pharmacol 36: 15–21Google Scholar
  136. Raymond JR, Fargin AF, Middleton JP, Graff JM, Haupt DM, Caron MG, Lefkowitz RJ, Dennis VW (1989b): The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. J Biol Chem 264: 21943–21950Google Scholar
  137. Raymond JR, Hnatowich M, Lefkowitz RJ, Caron MG (1989c): Adrenergic receptors: Models for the regulation of signal transduction processes. Hypertension 15: 119–131Google Scholar
  138. Raymond JR, Albers FJ, Middleton JP, Lefkowitz RJ, Caron MG, Obeid LM, Dennis VW (1991a): 5-HT1A and histamine H1 receptors expressed in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J Biol Chem 266: 372–379Google Scholar
  139. Raymond JR (1991): Protein kinase C induces phosphorylation and desensitization of the human 5-HT1A receptor J Biol Chem 266: 14747–14753Google Scholar
  140. Raymond JR, Albers FJ, Middleton JP (1992): Functional expression of human 5-HT1A receptors and differential coupling to second messengers in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, (in press)Google Scholar
  141. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988): Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA. 85: 6301–6305Google Scholar
  142. Richardson BP, Engel G. (1986): The pharmacology and function of 5-HT3 receptors. Trends Neurosci 7: 424–428Google Scholar
  143. Rydelek-Fitzgerald L, Teitler M, Fletcher PW, Ismaiel AM, Glennon RA (1990): NAN-190, agonist and antagonist interactions with brain 5-HT1A receptors. Brain Res 532: 191–196Google Scholar
  144. Saxena PR, Verdouw PD (1985): 5-Carboxyamide tryptamine, a compound with high affinity for 5-HT1 binding sites, dilates arterioles and constricts arteriovenous anastomoses. Br J Pharmacol 84: 533–544Google Scholar
  145. Saxena PR, Lawang A (1985): A comparison of cardiovascular and smooth muscle effects of 5-HT and 5-CT, a selective agonist of 5-HT1 receptors. Arch Int Pharmacodyn Ther 277: 235–252Google Scholar
  146. Saxena PR, Villalon CM (1990): Brain 5-HT1A receptor agonism: A novel mechanism for antihypertensive action. Trends Pharmacol Sci 11: 95–96Google Scholar
  147. Schoeffter P, Hoyer D (1988): Centrally acting hypotensive agents with affinity to 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br J Pharmacol 95: 975–985Google Scholar
  148. Schoemaker H, Langer SZ (1986): [3H]-8-OH-DPAT labels the serotonin transporter in rat striatum. Eur J Pharmacol 124: 371–373Google Scholar
  149. Sharp T, Beckus LI, Hjorth S, Bramwell SR, Grahame-Smith DG (1990): Further investigation of the in vivo pharmacological properties of the putative 5-HT1A antagonist, BMY 7378. Eur J Pharmacol 176: 331–340Google Scholar
  150. Shenker A, Maayani S, Weinstein H, Green JP (1985): Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur J Pharmacol 109: 427–429Google Scholar
  151. Sigal IS, Dixon RAF, Strader CD (1988): Molecular biology of adrenergic receptors. ISI Atlas Sci: Pharmacol 2: 387–391Google Scholar
  152. Sinton CM, Fallon SL (1986): Differences in responses of dorsal and median raphe serotonergic neurons to 5-HT1 receptor ligands. Soc Neurosci Abstr 12: 1239Google Scholar
  153. Smith LM, Peroutka SJ (1986): Differential effects of 5-hydroxytryptamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24: 1513–1519Google Scholar
  154. Sprouse JS, Aghajanian GK (1987): Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9Google Scholar
  155. Sternberg EM, Wedner HJ, Leung MK, Parker CW (1987): Effect of 5-HT and other monoamines on murine macrophages. J Immunol 138: 4360–4365Google Scholar
  156. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF (1989): Identification of two serine residues involved in agonist activation of the ß-adrenergic receptor. J Biol Chem 264: 13572–13578Google Scholar
  157. Taylor EW, Duckies SP, Nelson DL (1986): Dissociation constants of serotonin agonists in the canine basilar artery correlate to Ki values at the 5-HT1A binding site. J Pharmacol Exp Ther 236: 118–125Google Scholar
  158. Traber J, Glaser T (1987): 5-HT1A receptor-related anxiolytics. Trends Pharmacol Sci 8: 432–437Google Scholar
  159. Tricklebank MD, Forler C, Fozard JR (1985): The involvement of subtypes of the 5-HT1 receptor and of the catecholaminergic systems in the behavioral responses to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106: 271–282Google Scholar
  160. Tricklebank MD (1985): The behavioural response of 5-HT receptor agonists and subtypes of the central 5-HT receptor. Trends Pharmacol Sci 6: 403–407Google Scholar
  161. Trulson ME, Aresteh K (1986): Buspirone decreases the action of 5-hydroxytryptamine-containing dorsal raphe neurons in vitro. J Pharm Pharmacol 38: 380–382Google Scholar
  162. VanderMaelen CP, Matheson GK, Wilderman RC, Patterson LA (1986): Inhibition of serotonergic dorsal raphe neurons by systematic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol 129: 123–130Google Scholar
  163. Vanhoutte PM, Cohen RA, Van Neuten JM (1984): Serotonin and arterial vessels. J Cardiovasc Pharmacol 6 (suppl 6): S421–S428Google Scholar
  164. Van Nueten JM, Leysen JE, De Clerck F, Vanhoutte PM (1984): Serotonergic receptor subtypes and vascular reactivity. J Cardiovasc Pharmacol 6 (suppl 4): S564–S574Google Scholar
  165. Vergé D, Daval G, Marcinkiewicz, Patey A, El Mestikawy S, Gozlan H, Hamon M (1986): Q: Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J Neurosci 6: 3474–3482Google Scholar
  166. Vergé D, Daval G, Patey A, Gozlan H, El Mestikawy S, Hamon M (1985): Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113: 463–464Google Scholar
  167. Webb RC (1982): Increased vascular sensitivity to 5-HT and methysergide in hypertension in rats. Clin Sci 63: 73sGoogle Scholar
  168. Weissmann-Nanopoulos D, Mach E, Magre J, Demassey Y, Pujol JF (1985): Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem Int 7: 1061–1072Google Scholar
  169. Weiss S, Sebben M, Kemp DE, Bockaert J (1986): Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur J Pharmacol 120: 227–230Google Scholar
  170. Wilkinson LO, Abercrombie ED, Rasmussen K, Jacobs BL (1987): Effect of buspirone on single unit activity in locus coeruleus and dorsal raphe nucleus in behaving cats. Eur J Pharmacol 136: 123–127Google Scholar
  171. Yocca FD, Hyslop DK, Smith DW, Maayani S (1987): BMY 7378, a buspirone analog with high affinity, selectivity, and low intrinsic activity at the 5-HT1A receptor in rat and guinea-pig hippocampal membranes. Eur J Pharmacol 137: 293–294Google Scholar
  172. Yocca FD (1990): Neurochemistry and neurophysiology of buspirone and gepirone: Interactions at presynaptic and postsynaptic 5-HT1A receptors. J Clin Psycho-pharmacol 10: 6S–12SGoogle Scholar
  173. Zemlan FP, Zieleniewski-Murphy A, Murphy RM, Behbahani MM (1990): BMY-7378: Partial agonist at spinal cord 5-HT1A receptors. Neurochem Int 16: 515–522Google Scholar
  174. Zgombick JM, Beck SG, Mahle CD, Craddock-Royal B, Maayani S (1989): Pertussis toxin-sensitive guanine nucleotide-binding proteins couple adenosine A1 and 5-hydroxytryptaminelA receptors to the same effector systems in rat hippocampus: Biochemical and electrophysiological studies. Mol Pharmacol 35: 484–494Google Scholar
  175. Zgombick JM, Weinshank RL, Macchi M, Schecter LE, Branche KT, Hartig P (1991): Expression and pharmacological characterization of a canine 5-HT1D receptor subtype. Mol Pharmacol 40: 1036–1042Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • John R. Raymond
  • Salah El Mestikawy
  • Annick Fargin

There are no affiliations available

Personalised recommendations