The α-Adrenergic Receptors: New Subtypes, Pharmacology, and Coupling Mechanisms

  • John W. Regan
  • Susanna Cotecchia
Part of the Applications of Molecular Genetics to Pharmacology book series


If evolution truly moves in leaps and bounds rather than by gradual change, then the evolution of our understanding of the alpha (α) receptors is in one of these periods of dynamic transition. In 1982 most pharmacologists were content with two α-adrenergic receptor subtypes, although some fringe elements were clamoring for more (cf. McGrath, 1982). At present, biochemical techniques have led to the positive identification of six subtypes with the prospect of more being discovered in the near future. At this time, the pharmacological and physiological significance of these new receptor subtypes is largely unknown, and discovering their raison d’être promises to be exciting. This chapter examines the initial α-receptor classification and work that led to the first purification and cloning of the α-adrenergic receptors. It will also review recent studies on the identification of new α-receptor subtypes and what is presently known about their biochemical and pharmacological characteristics.


Receptor Subtype Adenylyl Cyclase Human Platelet Photoaffinity Label PS120 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist RP (1948): A study of the adrenotropic receptors. Am J Physiol 153: 586–600Google Scholar
  2. Benovic JL, Regan JW, Matsui H, Mayor F, Cotecchia S, Lundberg LMFL, Caron MG, Lefkowitz RJ (1987): Agonist-dependent phosphorylation of the a2-adrenergic receptor by the ß-adrenergic receptor kinase. J Biol Chem 262: 17251–17253Google Scholar
  3. Berthelsen S, Pettinger WA (1977): A functional basis for classification of a-adrenergic receptors. Life Sci 21: 595–606CrossRefGoogle Scholar
  4. Boyajian CL, Loughlin SE, Leslie FM (1987): Anatomical evidence for alpha-2 adrenoceptor heterogeneity: Differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241: 1079–1091Google Scholar
  5. Bresnahan MR, Flordellis CS, Vassilatis DK, Makrides SC, Zannis VI, Gavras H (1990): High level of expression of functional human platelet α 2-adrenergic receptors in a stable mouse C127 cell line. Biochim Biophys Acta 1052: 439–445CrossRefGoogle Scholar
  6. Bylund DB, U’Prichard DC (1983): Characterization of alpha-1 and alpha-2 adrenergic receptors. Int Rev Neurobiol 24: 343–431CrossRefGoogle Scholar
  7. Bylund DB (1985): Heterogeneity of alpha-2 adrenergic receptors. Pharmacol Biochem Behav 22: 835–843CrossRefGoogle Scholar
  8. Bylund DB, Ray-Prenger C, Murphy TJ (1988): Alpha-2A and alpha-2B adrenergic receptor subtypes: Antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 245: 600–607Google Scholar
  9. Cantiello HF, Lanier SM (1989): α2-Adrenergic receptors and the Na+/H+ exchanger in the intestinal epithelial cell line, HT-29. J Biol Chem 264: 16000–16007Google Scholar
  10. Cerione RA, Regan JW, Nakata H, Codina J, Benovic JL, Gierschik P, Somers RL, Spiegel AM, Birnbaumer L, Lefkowitz RJ, Car on MG (1986): Functional reconstitution of the α2-adrenergic receptor with guanine nucleotide regulatory proteins in phospholipid vesicles. J Biol Chem 261: 3901–3909Google Scholar
  11. Chalberg SC, Duda T, Rhine JA, Sharma RK (1990): Molecular cloning, sequencing and expression of an α 2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem 97: 161–172CrossRefGoogle Scholar
  12. Cheung Y, Barnett DB, Nahorski SR (1982): [3H]Rauwolscine and [3H]yohimbine binding to rat cerebral and human platel membranes: Possible heterogeneity of α2-adrenoceptors. Eur J Pharmacol 84: 79–85Google Scholar
  13. Connaughton S, Docherty JR (1990): No evidence for differences between pre- and postjunctional α2 adrenoceptors in the periphery. Br J Pharmacol 99: 97–102Google Scholar
  14. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK (1988): Molecular cloning and expression of the cDNA for the hamster α 1- adrenergic receptor. Proc Natl Acad Sci USA 85: 7159–7163CrossRefGoogle Scholar
  15. Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, Lefkowitz RJ, Regan JW (1990a): Multiple second messenger pathways of α-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem 265: 63–69Google Scholar
  16. Cotecchia S, Exum S, Caron MG, Lefkowitz RJ (1990b): Regions of the ar adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci USA 87: 2896–2900CrossRefGoogle Scholar
  17. Cullen BR (1987): Use of eukaryotic expression technology in the functional analysis of cloned genes. Meth Enzymol 152: 684–704CrossRefGoogle Scholar
  18. Daly RN, Sulpizio AC, Levitt B, DeMarinis RM, Regan JW, Ruffolo RR, Hieble JP (1988): Evidence for heterogeneity between pre- and postjunctional α 2-adrenoceptors using 9-substituted 3 benzazepines. J Pharmacol Exp Ther 247: 122–128Google Scholar
  19. Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986): Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79CrossRefGoogle Scholar
  20. Dixon RAF, Sigal IS, Strader CD (1988): Structure-function analysis of the ß-adrenergic receptor. Cold Spring Harbor Symp Quant Biol 53: 487–497CrossRefGoogle Scholar
  21. Dohlman HG, Caron MG, Lefkowitz RJ (1987): A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26: 2657–2664CrossRefGoogle Scholar
  22. Dubocovich ML, Langer SZ (1974): Negative feed-back regulation of noradrenaline release by nerve stimulation in the perfused cat’s spleen: Differences in potency of phenoxybenzamine in blocking the pre- and post-synaptic adrenergic receptors. J Physiol (Lond) 237: 505–519Google Scholar
  23. Feller DJ, Bylund DB (1984): Comparison of alpha-2 adrenergic receptors and their regulation in rodent and porcine species. J Pharmacol Exp Ther 228: 275–281Google Scholar
  24. Flordellis CS, Handy DE, Bresnahan MR, Zannis VI, Gavras H (1991): Cloning and expression of a rat brain α2B-adrenergic receptor. Proc Natl Acad Sci USA 88: 1019–1023CrossRefGoogle Scholar
  25. Fraser CM, Arakawa S, McCombie WR, Venter JC (1989): Cloning, sequence analysis, and permanent expression of a human a2-adrenergic receptor in Chinese hamster ovary cells. J Biol Chem 264: 11754–11761Google Scholar
  26. Giros B, Sokoloff P, Martres M, Riou J, Emorine LJ, Schwartz J (1989): Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342: 923–926CrossRefGoogle Scholar
  27. Graham RM, Hess H, Homey CJ (1982): Biophysical characterization of the purified α 1-adrenergic receptor and identification of the hormone binding sub- unit. J Biol Chem 257: 15174–15181Google Scholar
  28. Guyer CA, Horstman DA, Wilson AL, Clark JD, Cragoe EJ, Limbird LE (1990): Cloning, sequencing and expression of the gene encoding the porcine α2- adrenergic receptor. J Biol Chem 265: 17307–17317Google Scholar
  29. Haga T, Haga K (1980): Characterization of alpha-adrenergic receptor subtypes in rat brain: Estimation of ability of adrenergic ligands to displace 3H-dihydroergocryptine from the receptor subtypes. Life Sci 26: 211–218CrossRefGoogle Scholar
  30. Han C, Abel PW, Minneman KP (1987): α1-Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329: 333–335Google Scholar
  31. Harrison JK, D’Angelo DD, Zeng D, Lynch KR (1991): Pharmacological characterization of rat α 2-adrenergic receptors. Mol Pharmacol 40: 407–412Google Scholar
  32. Hieble JP, Sulpizio AC, Nichols AJ, Willette RN, Ruffolo RR (1988): Pharmacologic characterization of SKF 104078, a novel alpha-2 adrenoceptor antagonist which discriminates between pre- and postjunctional alpha-2 adrenoceptors. J Pharmacol Exp Ther 247: 645–652Google Scholar
  33. Hieble JP, DeMarinis RM, Matthews WD (1986): Evidence for and against heterogeneity of alpha1-adrenoceptors. Life Sci 38: 1339–1350CrossRefGoogle Scholar
  34. Hoffman BB, Lefkowitz RJ (1980): [3H]WB4101-Caution about its role as an alpha-adrenergic subtype selective radioligand. Biochem Pharmacol 29: 1537–1541Google Scholar
  35. Illes P, Dorge L (1985): Mechanism of α 2-adrenergic inhibition of neuroeffector transmission in the mouse vas deferens. Naunyn-Schmiedebergs Arch Pharmacol 328: 241–247CrossRefGoogle Scholar
  36. Isom LL, Limbird LE (1988): What happens next? In: The Alpha-2 Adrenergic Receptors, Limbird LE, ed. Clifton, N.J.; Humana Press, pp 323–363CrossRefGoogle Scholar
  37. Jones SB, Halenda SP, Bylund DB (1991): α2-Adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms. Mol Pharmacol 39: 239–245Google Scholar
  38. Kobilka BK, MacGregor C, Daniel K, Kobilka TS, Caron MG, Lefkowitz RJ (1987a): Functional activity and regulation of human ß 2-adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 262: 15796–15802Google Scholar
  39. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987b): Cloning, sequencing and expression of the gene coding for the human platelet α 2-adrenergic receptor. Science 238: 650–656CrossRefGoogle Scholar
  40. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric α-ß 2-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240: 1310–1316CrossRefGoogle Scholar
  41. Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1986): Cloning sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323: 411–416CrossRefGoogle Scholar
  42. Kunos G, Kan WH, Greguski R, Venter JC (1983): Selective affinity labeling and molecular characterization of hepatic a α 1-adrenergic receptors with [3H]phenoxybenzamine. J Biol Chem 258: 326–332Google Scholar
  43. Kurose H, Regan JW, Caron MG, Lefkowitz RJ (1991): Functional interactions of recombinant α 2 adrenergic receptor subtypes and G proteins in reconstituted phospholipid vesicles. Biochemistry 30: 3335–3341CrossRefGoogle Scholar
  44. Lambert GA, Lang WJ, Friedman E, Meller E, Gershon S (1978): Pharmacological and biochemical properties of isomeric yohimbine alkaloids. Eur J Pharmacol 49: 39–48CrossRefGoogle Scholar
  45. Lanier SM, Homey CJ, Patenaude C, Graham RM (1988): Identification of structurally distinct α 2-adrenergic receptors. J Biol Chem 263: 14491–14496Google Scholar
  46. Lanier SM, Downing S, Duzic E, Homey CJ (1991): Isolation of rat genomic clones encoding subtypes of the α 2-adrenergic receptor. J Biol Chem 266: 10470–10478Google Scholar
  47. Leeb-Lundberg LMF, Dickinson KEJ, Heald SL, Wikberg JES, DeBernardis JF, Winn M, Arendsen DL, Lekowitz RJ, Caron MG (1983): Covalent labeling of the cerebral cortex a α 1-adrenergic receptor with a new high affinity radioiodinated photoaffinity probe. Biochem Biophys Res Commun 115: 946–951CrossRefGoogle Scholar
  48. Leeb-Lundberg LMF, Dickinson KEJ, Heald SL, Wikberg JES, Hagen P, DeBernardis JF, Winn M, Arendsen DL, Lekowitz RJ, Caron MG (1984): Photoaffinity labeling of mammalian α 1-adrenergic receptors. J Biol Chem 259: 2579–2587Google Scholar
  49. Lomasney JW, Leeb-Lundberg LMF, Cotecchia S, Regan JW, DeBernardis JF, Caron MG, Lefkowitz RJ (1986): Mammalian aradrenergic receptor: Purification and characterization of the native receptor ligand binding subunit. J Biol Chem 261: 7710–7716Google Scholar
  50. Lomasney JW, Lorenz W, Allen LF, King K, Regan JW, Yang-Feng TL, Caron MG, Lefkowitz RJ (1990): Expansion of the alpha2-adrenergic receptor family: Cloning and characterization of a human alpha2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 87: 5094–5098CrossRefGoogle Scholar
  51. Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG (1991): Molecular cloning and expression of the cDNA for the a1A-adrenergic receptor. J Biol Chem 266: 6365–6369Google Scholar
  52. Lorenz W, Lomasney JW, Collins S, Regan JW, Caron MG, Lefkowitz (1990): Expression of three α2-adrenergic receptor subtypes in rat tissues: Implications for α2 receptor classification. Mol Pharmacol 38: 599–603Google Scholar
  53. Matsui H, Lefkowitz RJ, Caron MG, Regan JW (1989): Localization of the fourth membrane spanning domain as a ligand binding site in the human platelet α 2-adrenergic receptor. Biochemistry 28: 4125–4130CrossRefGoogle Scholar
  54. McGrath JC (1982): Evidence for more than one type of postjunctional α-adrenoceptor. Biochem Pharmacol 31: 467–484CrossRefGoogle Scholar
  55. Michel MC, Brass LF, Williams A, Bokach GM, LaMorte VJ, Motulsky HJ (1989): α2-Adrenergic receptor stimulation mobilizes intracellular Ca2+ in human erythroleukemia cells. J Biol Chem 264: 4986–4991Google Scholar
  56. Minneman KP (1988): α1-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40:87–119Google Scholar
  57. Minneman KP, Han C, Abel PW (1988): Comparison of α 1-adrenergic receptor subtypes distinguished by chlorethylclonidine and WB 4101. Mol Pharmacol 33: 509–514Google Scholar
  58. Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR (1989): Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342: 926–929CrossRefGoogle Scholar
  59. Morrow AL, Creese I (1986): Characterization of α1-adrenergic receptor subtypes in rat brain: A reevaluation of [3H]WB4104 and [3H]prazosin binding. J Pharmacol Exp Ther 29: 321–330Google Scholar
  60. Nakata H, Regan JW, Lefkowitz RJ (1986): Chemical modification of α 2-adrenoceptors: Possible role for tyrosine in the ligand binding site. Biochem Pharmacol 35: 4089–4094CrossRefGoogle Scholar
  61. North RA, Surprenant A (1985): Inhibitory synaptic potentials resulting from α 2-adrenoceptor activation in guinea-pig submucous plexus neurones. J Physiol (Lond) 358: 17–33Google Scholar
  62. O’Dowd BF, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M (1989): Palmi-toylation of the human ß 2-adrenergic receptor. J Biol Chem 264: 7564–7569Google Scholar
  63. Onorato JJ, Palczewski K, Regan JW, Caron MG, Lefkowitz RJ, Benovic JL (1991): Role of acidic amino acids in peptide substrates of the ß-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30: 5118–5125CrossRefGoogle Scholar
  64. Peralta EG, Winslow JW, Peterson GL, Smith DH, Ashkenazi A, Ramachandran J, Schimerlik MI, Capon DJ (1987): Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236: 600–605CrossRefGoogle Scholar
  65. Petrash AC, Bylund DB (1986): Alpha-2 adrenergic receptor subtypes indicated by [3H]yohimbine binding in human brain. Life Sci 38: 2129–2137CrossRefGoogle Scholar
  66. Regan JW (1988): Biochemistry of alpha-2 adrenergic receptors. In: The Alpha-2 Adrenergic Receptors, Limbird LE, ed. Clifton, N.J.: Humana Press, pp. 15–74CrossRefGoogle Scholar
  67. Regan JW, Matsui H (1990): α 2-Adrenergic receptor purification. In: Receptor Biochemistry: A Practical Approach, Hulme EC, ed. London: Oxford University PressGoogle Scholar
  68. Regan JW, DeMarinis RM, Caron MG, Lefkowitz RJ (1984): Identification of the subunit-binding site of α 2-adrenergic receptors using [3H]phenoxybenzamine. J Biol Chem 259: 7864–7869Google Scholar
  69. Regan JW, Raymond RJ, Lefkowitz RJ, DeMarinis RM (1986a): Photoaffinity labeling of human platelet and rabbit kidney α2-adrenoceptors with 3H-SKF102229. Biochem Biophys Res Commun 137: 606–613Google Scholar
  70. Regan JW, Nakata H, DeMarinis RM, Caron MG, Lefkowitz RJ (1986b): Purification and characterization of the human platelet α 2-adrenergic receptor. J Biol Chem 261: 3894–3900Google Scholar
  71. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988): Cloning and expression of a human kidney cDNA for an α 2-adrenergic receptor subtype. Proc Natl Acad Sci USA 85: 6301–6305CrossRefGoogle Scholar
  72. Repaske MG, Nunnari JM, Limbird LE (1987): Purification of the alpha-2 adrenergic receptor from porcine brain using a yohimbine-agarose affinity matrix. J Biol Chem 262: 12381–12386Google Scholar
  73. Sakaue M, Hoffman BB (1991): cAMP regulates transcription of the α2A adrenergic receptor gene in HT-29 cells. J Biol Chem 266: 5743–5749Google Scholar
  74. Sawutz DG, Lanier SM, Warren CD, Graham RM (1987): Glycosylation of the mammalian α 1-adrenergic receptor by complex type N-linked oligosaccharides. Mol Pharmacol 32: 565–571Google Scholar
  75. Schullery D, Huang Y, Regan JW: Antibodies to the v-vl loop of the CK2-C10 confirm its intracellular orientation. In preparation Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT, Yang-Feng TL, Caron MG, Lefkowitz RJ, Cotecchia S (1990): Molecular cloning and expression of the cDNA for a novel α1-adrenergic receptor subtype. J Biol Chem 265:8183–8189Google Scholar
  76. Starke K (1981): Alpha adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88: 199–236CrossRefGoogle Scholar
  77. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF (1989): Identification of two serine residues involved in agonist activation of the ß-adrenergic receptor. J Biol Chem 264: 13572–13578Google Scholar
  78. Suryanarayana S, Daunt DA, Zastrow MV, Kobilka BK (1991): A point mutation in the seventh hydrophobic domain of the α 2 adrenergic receptor increases its affinity for a family of ß receptor antagonists. J Biol Chem 266: 15488–15492Google Scholar
  79. Svensson S, Bailey TJ, Regan JW: Molecular cloning of a fish pigment cell α2-adrenergic receptor. In preparationGoogle Scholar
  80. Sweatt JD, Blair IA, Cragoe EJ, Limbird LE (1986): Inhibitors of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J Biol Chem 261: 8660–8666Google Scholar
  81. Timmermans PBMWM, Hoefke W, Stahle H, van Zwieten PA (1980): Structure- activity relationships in clonidine-like imidazolidines and related compounds. Prog Pharmacol 3: 21–62Google Scholar
  82. Tsujimoto G, Tsujimoto A, Suzuki E, Hashimoto K (1989): Glycogen phosphorylase activation by two different α 1-adrenergic receptor subtypes: Methoxamine selectively stimulates a putative α 1-adrenergic receptor subtype (α 1a) that couples with Ca2+ influx. Mol Pharmacol 36: 166–176Google Scholar
  83. U’Prichard DC, Greenberg DA, Snyder SH (1977): Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol 13: 454–473Google Scholar
  84. Voigt MM, McCune SK, Kanterman RY, Felder CC (1991): The rat CK2-C4 adrenergic receptor gene encodes a novel pharmacological subtype. FEBS Lett 278: 45–50CrossRefGoogle Scholar
  85. Wang CD, Buck MA, Fraser CM (1991): Site-directed mutagenesis of α 2A-adrenergic receptors: Identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol 40: 168–179Google Scholar
  86. Wang HY, Lipfert L, Malbon CC, Bahouth S (1989): Site-directed anti-peptide antibodies define the topography of the ß-adrenergic receptor. J Biol Chem 264: 14424–14431Google Scholar
  87. Weinshank RL, Zgombick JM, Macchi M, Adham N, Lichtblau H, Branchek TA, Hartig PR (1990): Cloning, expression and pharmacological characterization of a human α 2B-adrenergic receptor. Mol Pharmacol 38: 681–688Google Scholar
  88. Weitzell R, Tanaka T, Starke K (1979): Pre- and postsynaptic effects of yohimbine stereoisomers on noradrenergic transmission in the pulmonary artery of the rabbit. Naunyn Schmiedebergs Arch Pharmacol 308: 127–136CrossRefGoogle Scholar
  89. Wilson AL, Guyer CA, Cragoe EJ, Limbird LE (1990): The hydrophobic tryptic core of the porcine α2-adrenergic receptor retains allosteric modulation of binding by Na+, H+, and 5-amino-substituted amiloride analogs. J Biol Chem 265: 17318–17322Google Scholar
  90. Yarden Y, Rodriguez H, Wong SKF, Brandt DR, May DC, Burnier J, Harkins RN, Chen EY, Ramachandran J, Ullrich A, Ross EM (1986): The avian ß-adrenergic receptor: Primary structure and membrane topology. Proc Natl Acad Sci USA 83: 6795–6799CrossRefGoogle Scholar
  91. Zeng D, Harrison JK, D’Angelo DD, Barber CM, Tucker AL, Lu Z, Lynch KR (1990): Molecular characterization of a rat a2B-adrenergic receptor. Proc Natl Acad Sci USA 87: 3102–3106CrossRefGoogle Scholar
  92. Zeng D, Lynch KR (1991): Distribution of α 2-adrenergic receptor mRNAs in the rat CNS. Mol Brain Res 10: 219–225CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • John W. Regan
  • Susanna Cotecchia

There are no affiliations available

Personalised recommendations