Signal Transducing G-Proteins: α Subunits

  • Yoshito Kaziro
Part of the Applications of Molecular Genetics to Pharmacology book series


Signal transducing GTP-binding proteins are classified largely into two groups, i.e., heterotrimeric GTP-binding proteins which are referred to as G-proteins, and low-molecular-weight monomeric GTP-binding proteins (LMG) including Ras, Rap, Rho, Ral, ARF, YPT, and Rab proteins. The basic mechanism of the reaction catalyzed by these proteins appears to be analogous to that proposed for translational elongation factors (Kaziro, 1978). The GTP bound form is an active conformation which turns on the transmission of signals, and the hydrolysis of bound GTP to GDP is required to shift the conformation to an inactive form, i.e., to shut off the signal transduction.


Adenylyl Cyclase Pertussis Toxin GTPase Activity Protein Alpha Subunit Pertussis Toxin Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbacid M (1987): ras genes. Annu Rev Biochem 56:779–827Google Scholar
  2. Beals CR, Wilson CB, Perlmutter RM (1987): A small multigene family encodes Gi signal-transduction proteins. Proc Natl Acad Sci USA 84: 7886–7890CrossRefGoogle Scholar
  3. Berlot CH, Bourne H (1992): Identification of effector-activating residues of Gsa. Cell 68: 911–922CrossRefGoogle Scholar
  4. Bourne HR, Masters SB, Miller RT, Sullivan KA, Heideman W (1988): Mutations probe structure and function of G-protein a chains. Cold Spring Harbor Symp Quant Biol 53: 221–228CrossRefGoogle Scholar
  5. Bourne HR, Sanders DA, McCormick F (1990): The GTPase superfamily: A conserved switch for diverse cell functions. Nature 348: 125–132CrossRefGoogle Scholar
  6. Bourne HR, Sanders DA, McCormick F (1991): The GTPase superfamily: Conserved structure and molecular mechanism. Nature 349: 117–127CrossRefGoogle Scholar
  7. Bray P, Carter A, Simons C, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M (1986): Human cDNA clones for four species of Gas signal transduction protein. Proc Natl Acad Sci USA 83: 8893–8897CrossRefGoogle Scholar
  8. Bray P, Carter A, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M (1987): Human cDNA clones for an a. subunit of Gi signal-transducing protein. Proc Natl Acad Sci USA 84: 5115–5119CrossRefGoogle Scholar
  9. Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M (1985): Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41: 763–769CrossRefGoogle Scholar
  10. Casey PJ, Fong HK, Simon MI, Gilman AG (1990): Gz, a guanine nucleotide- binding protein with unique biochemical properties. J Biol Chem 265: 2383–2390Google Scholar
  11. Clementi E, Malgaretti N, Meldolesi J, Taramelli R (1990): A new constitutively activating mutation of the Gs protein alpha subunit-gsp Oncogene is found in human pituitary tumours. Oncogene 5: 1059–1061Google Scholar
  12. Codina J, Olate J, Abramowitz J, Mattera R, Cook RG, Birnbaumer L (1988): cxi-3 cDNA encodes the a subunit of Gk, the stimulatory G protein of receptor- regulated K+ channels. J Biol Chem 263: 6746–6750Google Scholar
  13. DeFeo-Jones D, Scolnick EM, Koller R, Dhar R (1983): ras-Related gene sequences identified and isolated from S. cerevisiae. Nature 306: 707–709Google Scholar
  14. Deretic D, Hamm HE (1987): Topographic analysis of antigenic determinants recognized by monoclonal antibodies to the photoreceptor guanyl nucleotide- binding protein, transducin. J Biol Chem 262: 10839–10847Google Scholar
  15. De Vos AM, Tong L, Milburn MV, Matias PM, Jankark J, Noguchi S, Nishimura S, Miura K, Ohtsuka E, Kim S-H (1988): Three-dimensional structure of an Oncogene protein: Catalytic domain of human c-H-ras p21. Science 239: 888–893CrossRefGoogle Scholar
  16. Didsbury JR, Ho Y, Snyderman R (1987): Human Gi protein a-subunit: Deduction of amino acid structure from a cloned cDNA. FEBS Lett 211: 160–164CrossRefGoogle Scholar
  17. Didsbury JR, Snyderman R (1987): Molecular cloning of a new human G protein. Evidence for two Gia-like protein families. FEBS Lett 219: 259–263CrossRefGoogle Scholar
  18. Dietzel D, Kurjan J (1987): The yeast SCGl gene: A Gcx-like protein implicated in the a- and a-factor response pathway. Cell 50: 1001–1010CrossRefGoogle Scholar
  19. Fong, HKW, Yoshimoto KK, Eversole-Cire P, Simon MI (1988): Identification of a GTP-binding protein a subunit that lacks an apparent ADP-ribosylation site for pertussis toxin. Proc Natl Acad Sci USA 85: 3066–3070CrossRefGoogle Scholar
  20. Freissmuth M, Gilman AG (1989): Mutations of Gsa designed to alter the reactivity of the protein with bacterial toxins: Substitutions at Arg 187 result in loss of GTPase activity. J Biol Chem 264: 21907–21914Google Scholar
  21. Freissmuth M, Casey PJ, Gilman AG (1989): G proteins control diverse pathways of transmembrane signaling. FASEB J 3: 2125–2131Google Scholar
  22. Fukui Y, Kaziro Y (1985): Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe. EMBO J 4: 687–691Google Scholar
  23. Gilman AG (1987): G proteins: Transducers of receptor-generated signals. Annu Rev Biochem 56: 615–649CrossRefGoogle Scholar
  24. Graziano MP, Gilman AG (1989): Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha. J Biol Chem 264: 15475–15482Google Scholar
  25. Gupta SK, Diez E, Heasley LE, Osawa S, Johnson GL (1990): A G protein mutant that inhibits thrombin and purinergic receptor activation of phospholipase A2. Science 249: 662–666CrossRefGoogle Scholar
  26. Gupta SK, Gallego C, Lowndes JM, Pleiman CM, Sable C, Eisfelder BJ, Johnson GJ (1992): Analysis of the fibroblast transformation potential of GTPase- deficient gip2 Oncogenes. Mol Cell Biol 12: 190–197Google Scholar
  27. Hamm HE, Deretic D, Arendt A, Hargrave PA, Koenig B, Hofmann KP (1988): Site of G protein binding to rhodopsin mapped with synthetic peptides from the a subunit. Science 241: 832–835CrossRefGoogle Scholar
  28. Harris BA, Robishaw JD, Mumby SM, Gilman A (1985): Molecular cloning of complementary DNA for the alpha subunit of the G protein that stimulates adenylate cyclase. Science 229: 1274–1277CrossRefGoogle Scholar
  29. Holbrook S, Kim S-H (1989): Molecular model of the G protein a subunit based on the crystal structure of the HRAS protein. Proc Natl Acad Sci USA 86: 1751–1755CrossRefGoogle Scholar
  30. Houslay MD, Milligan G, (1990): G-Proteins as Mediators of Cellular Signaling Processes. New York: John Wiley & Sons, Inc., 232 ppGoogle Scholar
  31. Hsu WH, Rudolph U, Sanford J, Bertrand P, Olate J, Nelson C, Moss LG, Boyd AE, Codina J, Birnbaumer L (1990): Molecular cloning of a novel splice variant of the alpha subunit of the mammalian Go protein. J Biol Chem 265, 11220–11226Google Scholar
  32. Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984): Homologies between signal transducing G proteins and ras gene products. Science 226: 860–862CrossRefGoogle Scholar
  33. Itoh H, Gilman AG (1991): Expression and analysis of Gsa mutants with decreased ability to activate adenylylcyclase. J Biol Chem 266: 16226–16231Google Scholar
  34. Itoh H, Kozasa T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K, Kaziro Y (1986): Molecular cloning and sequence determination of cDNAs for a subunit of the guanine nucleotide-binding proteins Gs, Gi, and Go from rat brain. Proc Natl Acad Sci USA 83: 3776–3780CrossRefGoogle Scholar
  35. Itoh H, Katada T, Ui M, Kawasaki H, Suzuki K, Kaziro Y (1988a): Identification of three pertussis toxin substrates (41, 40 and 39 kDa proteins) in mammalian brain. FEBS Lett 230: 85–89CrossRefGoogle Scholar
  36. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y (1988b): Presence of three distinct molecular species of Gi protein a subunit. J Biol Chem 263: 6656–6664Google Scholar
  37. Iyengar R, Birnbaumer L, eds. (1990): G Proteins. New York: Academic Press, 651 PPGoogle Scholar
  38. Jackson TR, Blair LAC, Marshall J, Goedert M, Hanley MR (1988): The mas Oncogene encodes an angiotensin receptor. Nature 335: 437–440CrossRefGoogle Scholar
  39. Jones DT, Reed RR (1987): Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262: 14241–14249Google Scholar
  40. Jones DT, Reed RR (1989): Golf: Olfactory neuron specific-G protein involved in odor ant signal transduction. Science 244: 790–795CrossRefGoogle Scholar
  41. Jones TL, Simonds WF, Merendino JJ, Brann MR, Spiegel AM (1990): Myristoy- lation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci USA 87, 568–572CrossRefGoogle Scholar
  42. Julius D, Jivelli TJ, Jessell TM, Axel R (1989): Ectopic expression of the serotonin lc receptor and the triggering of malignant transformation. Science 244: 1057–1062CrossRefGoogle Scholar
  43. Jurnak F (1985): Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras Oncogene proteins. Science 230: 32–36CrossRefGoogle Scholar
  44. Kahn RA, Gilman AG (1984): ADP-Ribosylation of Gs promoters the dissociation of its a and 0 subunits. J Biol Chem 259: 6235–6240Google Scholar
  45. Kaziro Y (1978): The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim Biophys Acta 505: 95–127Google Scholar
  46. Kaziro Y, Itoh H, Kozasa T, Tsukamoto T, Matsuoka M, Nakafuku M, Obara T, Takagi T, Hernandez R (1988): Structure of the genes coding for G protein a. subunits from mammalian and yeast Cells. Cold Spring Harbor Symposia Quant Biol 53: 209–220CrossRefGoogle Scholar
  47. Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T (1991): Structure and function of signal-transducing GTP-binding proteins. Ann Rev Biochem 60: 349–400CrossRefGoogle Scholar
  48. Kim SY, Ang SL, Bloch DB, Bloch KD, Kawahara Y, Tolman C, Lee R, Seidman JG, Neer EJ (1988): Identification of cDNA encoding an additional alpha subunit of a human GTP-binding protein: Expression of three alpha i subtypes in human tissues and Cell lines. Proc Natl Acad Sci USA 85: 4153–4157CrossRefGoogle Scholar
  49. Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991): Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353: 43–48CrossRefGoogle Scholar
  50. Kozasa T, Itoh H, Tsukamoto T, Kaziro Y (1988): Isolation and characterization of human GSCK gene. Proc Natl Acad Sci USA 85: 2081–2085CrossRefGoogle Scholar
  51. Kumagai A, Pupillo M, Gundersen R, Miake-Lye R, Devreotes PN, Firtel RA (1989): Regulation and function of Ga protein subunits in Dictyostelium. Cell 57: 265–275CrossRefGoogle Scholar
  52. LaCour TFM, Nyborg J, Thirup S, Clark BFC (1985): Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J 4: 2385–2388Google Scholar
  53. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989): GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696CrossRefGoogle Scholar
  54. Lavu S, Clark J, Swarup R, Matsushima K, Paturu K, Moss J, Kung H-F (1988): Molecular cloning and DNA sequence analysis of the human guanine nucleotide-binding protein Goa. Biochem Biophys Res Commun 150: 811–815CrossRefGoogle Scholar
  55. Lerea CL, Somers DE, Hurley JB, Klock IB, Bunt-Milam AH (1986): Identification of specific transducin a subunits in retinal rod and cone photoreceptors. Science 324: 77–80CrossRefGoogle Scholar
  56. Under ME, Pang IH, Duronio RJ, Gordon JI, Sternweis PC, Gilman AG (1991): Lipid modifications of G protein subunits. Myristoylation of Go alpha increases its affinity for beta gamma. J Biol Chem 266: 4654–4659Google Scholar
  57. Lochrie MA, Hurley JB, Simon MI (1985): Sequence of the alpha subunit of photoreceptor G protein: Homologies between transducin, ras, and elongation factors. Science 228: 96–99CrossRefGoogle Scholar
  58. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, McCormick F (1990): Two G proteins Oncogenes in human endocrine tumors. Science 249: 655–659CrossRefGoogle Scholar
  59. Ma H, Yanofsky MF, Meyerowitz EM (1990): Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA 87: 3821–3825CrossRefGoogle Scholar
  60. Masters SB, Stroud RM, Bourne HR (1986): Family of G protein a chains: Amphipathic analysis and predicted structure of functional domains. Protein Eng. 1: 47–54CrossRefGoogle Scholar
  61. Masters SB, Sullivan KA, Miller RT, Beiderman B, Lopez NG, Ramachandran J, Bourne HR (1988): Carboxyl terminal domain of Gsα specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241: 448–451CrossRefGoogle Scholar
  62. Masters SB, Miller RT, Chi MH, Chang F-H, Beiderman B, Lopez NG, Bourne HR (1989): Mutations of the GTP-binding site of sα alter stimulation of adenylyl cyclase. J Biol Chem 264: 15467–15474Google Scholar
  63. Matsuoka M, Itoh H, Kozasa T, Kaziro Y (1988): Sequence analysis of cDNA and genomic DNA for a putative pertussis toxin-insensitive guanine nucleotide- binding regulatory protein α subunit. Proc Natl Acad Sci USA 85: 538–5388CrossRefGoogle Scholar
  64. Matsuoka M, Itoh H, Kaziro Y (1990): Characterization of the human gene for Gxα, a pertussis toxin-insensitive regulatory GTP-binding protein. J Biol Chem 265: 13215–13220Google Scholar
  65. Mattera R, Codina J, Crozat A, Kidd V, Woo SLC, Birnbaumer L (1986): Identification by molecular cloning of two forms of the a-subunit of the human liver stimulatory (Gs) regulatory component of adenylate cyclase. FEBS Lett 206: 36–41CrossRefGoogle Scholar
  66. Medynski DC, Sullivan K, Smith D, van Dop C, Chang F-H, Fung BK-K, Seeburg PH, Bourne HR (1985): Amino acid sequence of the a subunit of transducin deduced from the cDNA sequence. Proc Natl Acad Sci USA 82: 4311–4315CrossRefGoogle Scholar
  67. Mercken L, Moras V, Tocque B, Mayaux JF (1990): The cDNA sequence of the alpha-subunit of the Chinese hamster adenylate cyclase-stimulatory G-protein. Nucl Acids Res 18: 662CrossRefGoogle Scholar
  68. Michel T, Winslow JW, Smith JA, Seidman JG, Neer EJ (1986): Molecular cloning and characterization of cDNA encoding the GTP-binding protein ai and identification of a related protein, ah. Proc Natl Acad Sci USA 83: 7663–7667CrossRefGoogle Scholar
  69. Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi K, Arai K, Kaziro Y, Matsumoto K (1987): GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50: 101–1019CrossRefGoogle Scholar
  70. Moss J, Vaughan M, (1990): ADP-Ribosylating Toxins and G Proteins, Insight into Signal Transduction. Washington, DC: Am Soc Microbiol, 567 ppGoogle Scholar
  71. Mumby SM, Heukeroth RO, Gordon JI, Gilman AG (1990): G-protein alpha- subunit expression, myristoylation, and membrane association in COS Cells. Proc Natl Acad Sci USA 87: 728–732CrossRefGoogle Scholar
  72. Nakafuku M, Itoh H, Nakamura S, Kaziro Y (1987): Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the a subunit of mammalian G proteins. Proc Natl Acad Sci USA 84: 2140–2144CrossRefGoogle Scholar
  73. Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, Nakamura S, Arai K, Matsumoto K, Kaziro Y (1988): Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: Studies on its structure and possible functions. Proc Natl Acad Sci USA 85: 1374–1378CrossRefGoogle Scholar
  74. Navon SE, Fung BK (1987): Characterization of transducin from bovine retinal rod outer segments. Participation of the amino-terminal region of T alpha in subunit interaction. J Biol Chem 262: 15746–15751Google Scholar
  75. Neer EJ, Pulsifer L, Wolf LG (1988): The amino terminus of G protein alpha subunits is required for interaction with beta gamma. J Biol Chem 263: 8996–8970Google Scholar
  76. Northup JK, Sternweise PC, Smigel MD, Shleifer LS, Ross EM, Gilman AG (1980): Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 77: 6516–6520CrossRefGoogle Scholar
  77. Nukada T, Tanabe T, Takahashi H, Noda M, Hirose T, Inayama S, Numa S (1986a): Primary structure of the a-subunit of bovine adenylate cyclase- stimulating G-protein deduced from the cDNA sequence. FEBS Lett 195: 220–224CrossRefGoogle Scholar
  78. Nukada T, Tanabe T, Takahashi H, Noda M, Haga K, Haga T, Ichi-yama A, Kangawa K, Hiranaga M, Matsuo H, Numa S (1986b): Primary structure of the a subunit of bovine adenylate cyclase-inhibiting protein deduced from the cDNA sequence. FEBS Lett 197: 305–310CrossRefGoogle Scholar
  79. Obara T, Nakafuku M, Yamamoto M, Kaziro Y (1991): Isolation and characterization of a gene encoding a G-protein a subunit from Schizosaccharomyces pombe: Involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 88: 5877–5881CrossRefGoogle Scholar
  80. Osawa S, Dhanasekaran N, Woon CW, Johnson GL (1990a): Gαi-Gαs chimeras define the function of a chain domains in control of G protein activation and ßγ subunit complex interactions. Cell 63: 697–706Google Scholar
  81. Osawa S, Heasley, LE, Dhanasekaran N, Gupta SK, Woon CW, Berlot C, Johnson GL (1990b): Mutation of the Gs protein alpha subunit NH2 terminus relieves an attenuator function, resulting in constitutive adenylyl cyclase stimulation. Mol Cell Biol 10: 2931–2940Google Scholar
  82. Ovchinnikov YA, Slepak VZ, Pronin AN, Shlensky AB, Levina NB, Voeikov VL, Lipkin VM (1987): Primary structure of bovine cerebellum GTP-binding protein G39 and its effect on the adenylate cyclase system. FEBS Lett 226: 91–95CrossRefGoogle Scholar
  83. Pace AM, Wong YH, Bourne HR (1991): A mutant α subunit of Gi2 induces neoplastic transformation of Rat-1 Cells. Proc Natl Acad Sci USA 88: 7031–7035CrossRefGoogle Scholar
  84. Palm D, Munch G, Malek D, Dees C, Hekman M (1990): Identification of a Gs-protein coupling domain to the beta-adrenoceptor using site-specific synthetic peptides. Carboxyl terminus of Gs alpha is involved in coupling to beta- adrenoceptors. FEBS Lett 261: 294–298CrossRefGoogle Scholar
  85. Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J, Wigler M (1984): Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607–612CrossRefGoogle Scholar
  86. Price SR, Murtagh JJ, Tsuchiya M, Serventi IM, Van MK, Angus CW, Moss J, Vaughan M (1990): Multiple forms of Go alpha mRNA: Analysis of the 3′-untranslated regions. Biochemistry 29: 5069–5076CrossRefGoogle Scholar
  87. Provost NM, Somers DE, Hurley JB (1988): A Drosophila melanogaster G protein a subunit gene is expressed primarily in embryos and pupae. J Biol Chem 263: 12070–12076Google Scholar
  88. Pupillo M, Kumagai A, Pitt GS, Firtel RA, Devreotes PN (1989): Multiple a subunits of guanine nucleotide-binding proteins in Dictyostelium. Proc Natl Acad Sci USA 86: 4892–4896CrossRefGoogle Scholar
  89. Rall T, Harris BA (1987): Identification of the lesion in the stimulatory GTP-binding protein of the uncoupled S49 lymphoma. FEBS Lett 224: 365–371CrossRefGoogle Scholar
  90. Raport CJ, Dere B, Hurley JB (1989): Characterization of the mouse rod transducing a subunit gene. J Biol Chem 264: 7122–7128Google Scholar
  91. Robishaw JD, Russell DW, Harris BA, Smigel MD, Gilman AG (1986a): Deduced primary structure of the a subunit of the GTP-binding stimulatory protein of adenylate cyclase. Proc Natl Acad Sci USA 83: 1251–1255CrossRefGoogle Scholar
  92. Robishaw JD, Smigel MD, Gilman AG (1986b): Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem 261: 9587–9590Google Scholar
  93. Ross EM (1989): Signal sorting and amplification through G protein-coupled receptors. Neuron 3: 141–152CrossRefGoogle Scholar
  94. Sewell JL, Kahn RA (1988): Sequences of the bovine and yeast AD P-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci USA 85: 4620–4624CrossRefGoogle Scholar
  95. Simon MI, Strathmann MP, Gautam N (1991): Diversity of G proteins in signal transduction. Science 252: 802–808CrossRefGoogle Scholar
  96. Strathmann M, Simon MI (1990): G protein diversity: A distinct class of 8 subunits is present in vertebrate and invertebrates. Proc Natl Acad Sci USA 87: 9113–9117CrossRefGoogle Scholar
  97. Strathmann M, Wilkie TM, Simon MI (1989): Diversity of the G-protein family: Sequences from five additional a. subunits in the mouse. Proc Natl Acad Sci USA 86: 7407–7409CrossRefGoogle Scholar
  98. Strathmann M, Wilkie TM, Simon MI (1990): Alternative splicing produces transcripts encoding two forms of the a subunit of GTP-binding protein Gc. Proc Natl Acad Sci USA 87: 6477–6481CrossRefGoogle Scholar
  99. Suki WN, Abramowitz J, Mattera R, Codina J, Birnbaumer L (1987): The human genome encodes at least three non-allellic G proteins with ad-type subunits. FEBS Lett 220: 187–192CrossRefGoogle Scholar
  100. Sullivan KA, Liao Y-C, Alborzi A, Beiderman B, Chang F-H, Masters SB, Levinson AD, Bourne HR (1986): Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the a chains. Proc Natl Acad Sci USA 83: 6687–6691CrossRefGoogle Scholar
  101. Sullivan KA, Miller RT, Masters SB, Beiderman B, Heideman W, Bourne HR (1987): Identification of receptor contact site involved in receptor-G protein coupling. Nature 330: 758–760CrossRefGoogle Scholar
  102. Tanabe T, Nukada T, Nishikawa Y, Sugimoto K, Suzuki H, Takahashi H, Noda M, Haga T, Ichiyama A, Kanagawa K, Minamino N, Matsuo H, Numa S (1985): Primary structure of the a-subunit of transducin and its relationship to ras proteins. Nature 315: 242–245CrossRefGoogle Scholar
  103. Taylor SJ, Exton JH (1991): Two alpha subunits of the Gq class of G proteins stimulate phosphoinositide phospholipase C-beta 1 activity. FEBS Lett 286: 214–216CrossRefGoogle Scholar
  104. Taylor SJ, Smith J A, Exton JH (1990): Purification from bovine liver membranes of a guanine nucleotide-dependent activator of phosphoinositide-specific phospholipase C. Immunologic identification as a novel G-protein alpha subunit. J Biol Chem 265, 17150–17156Google Scholar
  105. Taylor SJ, Chae HZ, Rhee SG, Exton JH (1991): Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 350: 516–518CrossRefGoogle Scholar
  106. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985): In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 27–36CrossRefGoogle Scholar
  107. Tsukamoto T, Toyama R, Itoh H, Kozasa T, Matsuoka M, Kaziro Y (1991): Structure of the human gene and two rat cDNAs encoding the a chain of GTP-binding regulatory protein G0: Two different mRNAs are generated by alternative splicing. Proc Natl Acad Sci USA 88: 2974–2978CrossRefGoogle Scholar
  108. Van Dop C, Tsubokawa M, Bourne HR, Ramachandran J (1984): Amino acid sequences of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259: 696–698Google Scholar
  109. Van Meurs KP, Angus CW, Lavu S, Kung H-F, Czarnecki SK, Moss J, Vughan M (1987): Deduced amino acid sequence of bovine retinal Goa: Similarities to other guanine nucleotide-binding proteins. Proc Natl Acad Sci USA 84: 3107–3111CrossRefGoogle Scholar
  110. Weinstein LS, Spiegel AM, Carter AD (1988): Cloning and characterization of the human gene for the a-subunit of Gi2, a GTP-binding signal transduction protein. FEBS Lett 232: 333–340CrossRefGoogle Scholar
  111. West RJ, Moss J, Vaughan M, Liu T, Liu TY (1985): Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem 260: 14428–14430Google Scholar
  112. Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O’Hara P, MacKay VL (1989): The STE4 and STE18 genes of yeast encode potential and y subunits of the mating factor receptor-coupled G protein. Cell 56: 467 - 477CrossRefGoogle Scholar
  113. Woon CW, Heasley L, Osawa S, Johnson GL (1989a): Mutation of glycine 49 to valine in the a subunit of Gs results in the constitutive elevation of cyclic AMP synthesis. Biochemistry 28: 4547–4551CrossRefGoogle Scholar
  114. Woon CW, Soparkar S, Heasley L, Johnson GL (1989b): Expression of a G alpha s/G alpha i chimera that constitutively activates cyclic AMP synthesis. J Biol Chem 264: 5687–5693Google Scholar
  115. Yatsunami K, Khorana HG (1985): GTPase of bovine rod outer segments: The amino acid sequence of the a subunit as derived from the cDNA sequence. Proc Natl Acad Sci USA 82: 4316–4320CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Yoshito Kaziro

There are no affiliations available

Personalised recommendations