Mechanisms of Anticonvulsant Action of Valproate: An Overview and Perspective

  • R. Čapek
  • B. Esplin


As has been the case with many discoveries of new drugs, the anticonvulsant effects of valproic acid were discovered serendipitously. The chemical, with a simple branched aliphatic molecular structure, n-dipropylacetic acid (2-propylpentanoic acid, 2-propylvaleric acid) was synthesized in the last century (Burton, 1882) and was used in the sixties as a solvent for several compounds to be tested for anticonvulsant activity. When the appropriate control experiment was done with the solvent alone, a marked protection against pentylenetetrazol seizures was detected (Meunier et al., 1963). The first clinical trials with the sodium salt of this acid were performed shortly thereafter. (Carraz et al., 1964). Since 1964, the drug has been marketed and used throughout Europe. It was a considerable time before the use of valproate for treatment of epilepsy was authorized in the United States, in 1978.


Valproic Acid Anticonvulsant Action Anticonvulsant Effect Repetitive Firing Succinic Semialdehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Ghani, A.-S., Coutinho-Netto, J., Druce, D., and Bradford, H.F., 1981, Effects of anticonvulsants on the in vitro and in vivo release of GABA, Biochem. Pharmacol. 30: 363–368.Google Scholar
  2. Agopyan, N., Avoli, M., Rieb, L., and Tancredi, V., 1985, Depression of hippocampal low calcium field bursts by the antiepileptic drug valproic acid, Neurosci. Lett. 60: 57–62.Google Scholar
  3. Albertson, T.E., Peterson, S.L., Stark, L.G., and Baselt, R.C., 1981, Valproic acid serum levels and protection against kindled amygdaloid seizures in the rat, Neuropharmacology 20: 95–97.Google Scholar
  4. Alkadhi, K.A., and Banks, F.W., 1984, Pre-and postsynaptic actions of valproic acid at the frog neuromuscular junction, Brain Res. 306: 388–390.Google Scholar
  5. Anderson, W.W., Swartzwelder, H.S., and Wilson, W.A., 1987, The NMDA receptor antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis but not epileptiform bursting in the rat hippocampal slice, J. Neurophysiol. 57: 1–21.Google Scholar
  6. Anlezark, G.M., Horton, R.W., Meldrum, B.S., and Sawaya, M.C.B., 1976, Anticonvulsant action of ethanolamine-O-sulphate and di-n-propylacetate and the metabolism of γ-aminobutyric acid (GABA) in mice with audiogenic seizures, Biochem. Pharmacol. 25: 413–417.Google Scholar
  7. Apatoff, B.R., and Riker, W.K., 1980, Effects of the anticonvulsant dipropylacetate on bullfrog sympathetic ganglia, Proc. West. Pharmacol. Soc. 23: 151–156.Google Scholar
  8. Balázs, R., Machiyama, Y., Hammond, B.J., Julian, T., and Richter, D., 1970, The operation of the α-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro, Biochem. J. 116: 445–467.Google Scholar
  9. Balcar, V.J., and Mandel, P., 1976, Inhibition of high affinity uptake of GABA by branched fatty acids, Experientia 32: 904–905.Google Scholar
  10. Baldino Jr., F., and Geller, H.M., 1981a, Sodium valproate enhancement of γ-aminobutyric acid (GABA) inhibition: Electrophysiological evidence for anticonvulsant activity, J. Pharmacol. Exp. Ther. 217: 445–450.Google Scholar
  11. Baldino Jr., F., and Geller, H.M., 1981b, Effect of sodium valproate on hypothalamic neurons in vivo and in vitro, Brain Res. 219: 231–237.Google Scholar
  12. Benavides, J., Rumigny, J.F., Bourguignon, J.J., Cash, C., Wermuth, C.G., Mandel, P., Vincendon, G., and Maître, M., 1982, High affinity binding site for γ-hydroxybutyric acid in rat brain, Life Sci. 30: 953–961.Google Scholar
  13. Bernasconi, R., Bencze, W., Hauser, K., Klein, M., Martin, P., and Schmutz, M., 1984, Protective effects of diazepam and valproate on β-vinyl-lactic acid-induced seizures, Neurosci. Lett. 47: 339–344.Google Scholar
  14. Bernasconi, R., Klein, M., Martin, P., Portet, C., Maître, L., Jones, R.S.G., Baltzer, V., and Schmutz, M., 1985, The specific protective effect of diazepam and valproate against isoniazid-induced seizures is not correlated with increased GABA levels, J. Neural Transmission 63: 169–189.Google Scholar
  15. Browne, T.R., 1980, Valproic acid, New Engl. J.Med. 302: 661–666.Google Scholar
  16. Bruni, J., and Wilder, B.J., 1979, Valproic acid, Arch. Neurol. 36: 393–398.Google Scholar
  17. Buchhalter, J.R., and Dichter, M.A., 1986, Effects of valproic acid in cultured mammalian neurons., Neurology 36: 259–262.Google Scholar
  18. Burton, B.S., 1882, On the propyl derivatives and decomposition products of ethylacetoacetate, Am. Chem. J. 3: 385–395.Google Scholar
  19. Capek, R., and Esplin, B., 1986, Effects of valproate on action potentials and repetitive firing of CA1 pyramidal cells in the hippocampal slice preparation, Soc. Neurosci. Abstr. 12: 46.Google Scholar
  20. Capek, R., and Esplin, B., 1988, Depressant effects of lidocaine on repetitive firing of CA1 pyramidal cells in the hippocampal slice, Soc. Neurosci. Abstr. 14: 570.Google Scholar
  21. Carl, G.F., DeLoach, C., and Patterson, J., 1985, Valproate metabolite concentrations in brain increase with chronic administration of sodium valproate, Life Sci. 37: 2029–2035.Google Scholar
  22. Carraz, G., Fau, R., Chateau, R., and Bonnin, J., 1964, Communication à propos des premiers essais cliniques sur l’activité anti-épileptique de l’acide n-dipropylacétique (sel de Na), Ann. Med. Psychol. 122: 577–585.Google Scholar
  23. Cash, C.D., Maître, M., and Mandel, P., 1979, Purification from human brain and some properties of two NADP-linked aldehyde reductases which reduce succinic semialdehyde to 4-hydroxybuty-rate, J. Neurochem. 33: 1169–1175.Google Scholar
  24. Catterall, W.A., 1987, Common modes of drug action on Na+ channels: Local anesthetics, antiarrhythmics and anticonvulsants, Trends Pharmacol. Sci. 8: 57–65.Google Scholar
  25. Chapman, A.G., 1982, The effect of valproate on cerebral amino acid metabolism and its relationship to anticonvulsant effects, in: Research Progress in Epilepsy (Rose, F.C., ed.), Pitman Press, London, pp. 371–383.Google Scholar
  26. Chapman, A., Keane, P., Meldrum, B., Simiand, J., and Vernieres, J., 1982a, Mechanism of anticonvulsant action of valproate, Prog. Neurohiol. 19: 315–359.Google Scholar
  27. Chapman, A.G., Riley, K., Evans, M.C., and Meldrum, B.S., 1982b, Acute effects of sodium valproate and γ-vinyl GABA on regional amino acid metabolism in the rat brain, Neurochem. Res. 7: 1089–1105.Google Scholar
  28. Chapman, A.G., Croucher, M.J., and Meldrum, B.S., 1984, Anticonvulsant activity of intracere-broventricularly administered valproate and valproate analogues. A dose-dependent correlation with changes in brain aspartate and GABA levels in DBA/2 mice, Biochem. Pharmacol. 33: 1459–1463.Google Scholar
  29. Cooper, J.R., Bloom, E., and Roth, R.H., 1986, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, Oxford.Google Scholar
  30. Cornford, E.M., Diep, C.P., and Pardridge, W.M., 1985, Blood-brain barrier transport of valproic acid, J. Neurochem. 44: 1541–1550.Google Scholar
  31. Courtney, K.R., 1980, Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics, J. Pharmacol. Exp. Ther. 213: 114–119.Google Scholar
  32. Courtney, K.R., and Etter, E.F., 1983, Modulated anticonvulsant block of sodium channels in nerve and muscle, Eur. J. Pharmacol. 88: 1–9.Google Scholar
  33. Cremer, J.E., Sarna, C.S., Teal, H.M., and Cunningham, V.J., 1978, Amino acid precursors: Their transport into brain and initial metabolism, in: Amino Acids as Transmitters (Fonnum, F., ed.), Plenum Press, New York, London, pp. 669–689.Google Scholar
  34. Cromlish, J.A., and Flynn, T.G., 1985, Identification of pig brain aldehyde reductases with the high-Km aldehyde reductase, the low-Km aldehyde reductase and aldose reductase, car-bonyl reductase, and succinic semialdehyde reductase, J. Neurochem. 44: 1485–1493.Google Scholar
  35. Croucher, M.J., Collins, J.F., and Meldrum, B.S., 1982, Anticonvulsant action of excitatory amino acid antagonists, Science 216: 899–901.Google Scholar
  36. Dreifuss, F.E., 1983, Adverse effects of antiepilep-tic drugs, in: Epilepsy (Ward, A.A.J., Penry, J.K., and Purpura, D., eds.), Raven Press, New York, pp. 249–266.Google Scholar
  37. Dren, A.T., Giardina, W.J., and Hagen, N.S., 1977, Valproic acid, in: Pharmacological and Biochemical Properties of Drug Substances (Goldberg, M.E., ed.), American Pharmaceutical Association Academy of Pharmaceutical Sciences, Washington, DC, pp. 58–97.Google Scholar
  38. Fohlmeister, J., Adelman Jr., W., and Brennan, J., 1984, Excitable channel currents and gating times in the presence of anticonvulsants ethosuximide and valproate., J. Pharmacol. Exp. Ther. 230: 75–81.Google Scholar
  39. Fowler, L.J., Beckford, J., and John, R.A., 1975, An analysis of the kinetics of the inhibition of rabbit brain γ-aminobutyrate aminotransferase by sodium n-dipropylacetate and some other simple carboxylic acids, Biochem. Pharmacol. 24: 1267–1270.Google Scholar
  40. Franceschetti, S., Hamon, B., and Heinemann, U., 1986, The action of valproate on spontaneous epileptiform activity in the absence of synaptic transmission and on evoked changes in [Ca2+]o and [K+]o in the hippocampal slice, Brain Res. 386: 1–11.Google Scholar
  41. Frank, G.B., 1986, A pharmacological explanation of the use-dependency of the verapamil (and D-600) block of slow calcium channels, J. Pharmacol. Exp. Ther. 236: 505–511.Google Scholar
  42. Fromm, G.H., 1985, Effects of different classes of antiepileptic drugs on brain-stem pathways, Fed. Proc. 44: 2432–2435.Google Scholar
  43. Fromm, G.H., Glass, J.D., Chattha, A.S., Martinez, A.J., and Silverman, M., 1980, Antiabsence drugs and inhibitory pathways, Neurology 30: 126–131.Google Scholar
  44. Gallagher, J.P., Inokuchi, H., Nakamura, J., and Shinnick-Gallagher, P., 1981, Effects of anticonvulsants on excitability and GABA sensitivity of cat dorsal root ganglion cells, Neuropharmacol. 20: 427–433.Google Scholar
  45. Gent, J.P., and Phillips, N.I., 1980, Sodium di-n-propylacetate (valproate) potentiates responses to GABA and muscimol on single central neurones, Brain Res. 197: 275–278.Google Scholar
  46. Godin, Y., Heiner, L., Mark, J., and Mandel, P., 1969, Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism, J. Neurochem. 16: 869–873.Google Scholar
  47. Godschalk, M., Dzoljic, M.R., and Bonta, I.L., 1976, Antagonism of γ-hydroxybutyrate-induced hypersynchronization in the ECoG of the rat by anti-petit mal drugs, Neurosci. Lett. 3: 145–150.Google Scholar
  48. Godschalk, M., Dzoljic, M.R., and Bonta, I.L., 1977, Slow wave sleep and a state resembling absence epilepsy induced in the rat by γ-hydroxy-butyrate, Eur. J. Pharmacol. 44: 105–111.Google Scholar
  49. Gram, L., and Bentsen, K.D., 1985, Valproate: An updated review, Acta Neurol. Scand. 72: 129–139.Google Scholar
  50. Gram, L., Larsson, O.M., Johnsen, A.H., and Schousboe, A., 1988, Effects of valproate, vi-gabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons, Epilepsy Res. 2: 87–95.Google Scholar
  51. Griffith, W.H., and Taylor, L., 1988, Sodium valproate decreases synaptic potentiation and epileptiform activity in hippocampus, Brain Res. 474: 155–164.Google Scholar
  52. Haas, H.L., and Jefferys, J.G.R., 1984, Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices, J. Physiol. 354: 185–201.Google Scholar
  53. Hackman, J.C., Grayson, V., and Davidoff, R.A., 1981, The presynaptic effects of valproic acid in the isolated frog spinal cord, Brain Res. 220: 269–285.Google Scholar
  54. Hammond, E.J., Wilder, B.J., and Bruni, J., 1981, Central actions of valproic acid in man and in experimental models of epilepsy, Life Sci. 29: 2561–2574.Google Scholar
  55. Harding, G.F.A., Herrick, C.E., and Jeavons, P.M., 1978, A controlled study of the effect of sodium valproate on photosensitive epilepsy and its prognosis, Epilepsia 19: 555–565.Google Scholar
  56. Harrison, N.L., and Simmonds, M.A., 1982, Sodium valproate enhances responses to GABA receptor activation only at high concentrations, Brain Res. 250: 201–204.Google Scholar
  57. Harvey, P.K.P., Bradford, H.F., and Davison, A.N., 1975, The inhibitory effect of sodium n-dipropyl acetate on the degradative enzymes of the GABA shunt, FEBS Lett. 52: 251–254.Google Scholar
  58. Hille, B., 1977, Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction, J. Gen. Physiol. 69: 497–515.Google Scholar
  59. Hondeghem, L.M., and Katzung, B.G., 1977, Time and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels, Biochim. Biophys. Acta. 472: 373–398.Google Scholar
  60. Hondeghem, L.M., and Katzung, B.G., 1984, Antiarrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel-blocking drugs, Annu. Rev. Pharmacol. 24: 387–423.Google Scholar
  61. Horton, R.W., Anlezark, G.M., Sawaya, M.C.B., and Meldrum, B.S., 1977, Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O sulphate, Eur. J. Pharmacol. 41: 387–397.Google Scholar
  62. Howe, G.M., Howe, S.J., Tulloch, S.J., and Walter, D.S., 1981, Relation between plasma concentration of valproic acid and its anticonvulsant and behavioural effect in rats, Br. J. Pharmacol. 73: 231P–232P.Google Scholar
  63. Iadalora, M.J., and Gale, K., 1979, Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo, Eur. J. Pharmacol. 59: 125–129.Google Scholar
  64. Iadarola, M.J., and Gale, K., 1980, GABA-elevating agents: comparison of neurochemical and anticonvulsant effects in rats, in: Advances in Epileptology: XIth Epilepsy International Symposium (Canger, R., Angeleri, F. and Penry, J.K., eds.), Raven Press, New York, pp. 449–455.Google Scholar
  65. Jeavons, P.M., and Clark, J.E., 1974, Sodium valproate in treatment of epilepsy, Br. Med. J. 2: 584–586.Google Scholar
  66. Johnston, D., 1984, Valproic acid: Update on its mechanisms of action, Epilepsia 25(Suppl. 1): S1–S4.Google Scholar
  67. Johnston, D., and Slater, G., 1982, Valproate mechanisms of action, in: Antiepileptic Drugs (Woodbury, D., Erry, J., and Pippenger, C., eds.), Raven Press, New York, pp. 611–616.Google Scholar
  68. Jurna, I., 1985, Electrophysiological effects of anti-epileptic drugs, in: Antiepileptic Drugs (Frey, H.-H. and Janz, D., eds.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 611–658.Google Scholar
  69. Kanazawa, I., Iversen, L.L., and Kelly, J.S., 1976, Glutamate decarboxylase activity in the rat posterior pituitary, pineal gland, dorsal root ganglion and superior cervical ganglion, J. Neurochem. 27: 1267–1269.Google Scholar
  70. Kaufman, E.E., and Nelson, T., 1987, Evidence for the participation of a cytosolic NADP+-dependent oxidoreductase in the catabolism of γ-hydroxybutyrate in vivo, J. Neurochem. 48: 1935–1941.Google Scholar
  71. Kaufman, E.E., Relkin, N., and Nelson, T., 1979, Purification and characterization of an NADP+-linked alcohol oxido-reductase which catalyzes the interconversion of γ-hydroxybutyrate and succinic semialdehyde, J. Neurochem. 32: 699–712.Google Scholar
  72. Kerwin, R.W., and Taberner, P.V., 1981, The mechanism of action of sodium valproate, Gen. Pharmacol. 12: 71–75.Google Scholar
  73. Kerwin, R.W., Olpe, H.-R., and Schmutz, M., 1980, The effect of sodium-n-dipropyl acetate on γ-aminobutyric acid-dependent inhibition in the rat cortex and substantia nigra in relation to its anticonvulsant activity, Br. J. Pharmacol. 71: 545–551.Google Scholar
  74. Klunk, W.E., Kaiman, B.L., Ferrendelli, J.A., and Covey, D.F., 1983, Computer-assisted modeling of the picrotoxinin and γ-butyrolactone receptor site, Molec. Pharmacol. 23: 511–518.Google Scholar
  75. Kukino, K., and Deguchi, T., 1977, Effects of sodium dipropylacetate on γ-aminobutyric acid and biogenic amines in rat brain, Chem. Pharmacol. Bull. 25: 2257–2262.Google Scholar
  76. Kulig, B.M., Gonzales-Portal, C., Somoza, E., and DeFeudis, F.V., 1977, Effect of di-n-propylacetate on the “binding” of GABA to a synaptosome-enriched fraction of rat cerebral cortex, Psychopharmacology 53: 255–257.Google Scholar
  77. Kupferberg, H.J., 1980, Sodium valproate, in: Antiepileptic Drugs: Mechanisms of Action (Glaser, G.H., Penry, J.K. and Woodbury, D.M., eds.), Raven Press, New York, pp. 643–654.Google Scholar
  78. Lacolle, J.Y., Ferrandes, B., and Eymard, P., 1977, Profile of anticonvulsant activity of sodium valproate. Role of GABA, in: Advances in Epileptology (Meinardi, H., and Rowan, A.S., eds.), Swets en Zeitlinger, Lisse, The Netherlands, pp. 162–167.Google Scholar
  79. Lautin, A., Angrist, B., Stanley, M., Gershon, S., Heckl, K., and Karobath, K., 1980, Sodium valproate in schizophrenia: Some biochemical correlates, Br. J. Psychiat. 137: 240–244.Google Scholar
  80. Lloyd, K.G., Bossi, L., Morselli, P.L., Munari, C., Rougier, M., and Loiseau, H., 1986, Alterations in GABA-mediated synaptic transmission in human epilepsy, in: Advances in Neurology (Delgado-Escueta, A.V., Ward, A.A., Odbury, D.M., and Porter, R.J., eds.), Raven Press, New York, pp. 1033–1044.Google Scholar
  81. Loo, P.A., Braunwalder, A.F., Williams, M., and Sills, M.A., 1987, The novel anticonvulsant MK-801 interacts with central phencyclidine recognition sites in rat brain, Eur. J. Pharmacol. 135: 261–263.Google Scholar
  82. Löscher, W., 1980, Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA, J. Neurochem. 34: 1603–1608.Google Scholar
  83. Löscher, W., 1981a, Valproate induced changes in GABA metabolism at the subcellular level, Biochem. Pharmacol. 30: 1364–1366.Google Scholar
  84. Löscher, W., 1981b, Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions, J. Neurochem. 36: 1521–1527.Google Scholar
  85. Löscher, W., 1982, GABA in plasma, CSF and brain of dogs during acute and chronic treatment with γ-acetylenic GABA and valproic acid, in: Problems in GABA Research. From Brain to Bacteria (Okada, Y. and Roberts, E., eds.), Excerpta Medica, Amsterdam, pp. 102–109.Google Scholar
  86. Löscher, W., 1985, Valproic acid, in: Antiepileptic Drugs (Frey, H.-H. and Janz, D., eds.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 507–536.Google Scholar
  87. Löscher, W., and Frey, H.-H., 1977, Effect of con-vulsant and anti-convulsant agents on level and metabolism of γ-aminobutyric acid in mouse brain, Naunyn-Schmiedeberg’s Arch. Pharmacol. 296: 263–269.Google Scholar
  88. Löscher, W., and Frey, H.-H., 1984, Evaluation of anticonvulsant drugs in gerbils with reflex epilepsy, Arzneimittel-Forsch. 34: 1484–1488.Google Scholar
  89. Löscher, W., and Nau, H., 1982, Valproic acid: Metabolite concentrations in plasma and brain, anticonvulsant activity, and effects on GABA metabolism during subacute treatment in mice, Arch. Int. Pharmacodyn. Ther. 257: 20–31.Google Scholar
  90. Löscher, W., and Nau, H., 1983, Distribution of valproic acid and its metabolites in various brain areas of dogs and rats after acute and prolonged treatment, J. Pharmacol. Exp. Ther. 226: 845–854.Google Scholar
  91. Löscher, W., and Schmidt, D., 1980, Increase of human plasma GABA by sodium valproate, Epilepsia 21: 611–615.Google Scholar
  92. Löscher, W., and Siemens, H., 1984, Valproic acid increases γ-aminobutyric acid in CSF of epileptic children, Lancet ii: 225.Google Scholar
  93. Löscher, W., Vetter, M., Böhme, G., and Stoltenburg-Didinger, G., 1985, In vivo effects of anticonvulsant drugs on nerve terminal (synaptosomal) GABA levels in 11 brain regions of the rat, J. Neural Transmission 63: 157–167.Google Scholar
  94. Löscher, W., Nau, H., and Siemens, H., 1988, Penetration of valproate and its active metabolites into cerebrospinal fluid of children with epilepsy, Epilepsia 29: 311–316.Google Scholar
  95. MacDonald, J.F., Miljkovic, Z., and Pennefather, P., 1987, Use-dependent block of excitatory amino acid currents in cultured neurons by keta-mine, J. Neurophysiol. 58: 251–266.Google Scholar
  96. Macdonald, R.L., and Bergey, G.K., 1979, Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons, Brain Res. 170: 558–562.Google Scholar
  97. Macdonald, R.L., McLean, M.J., and Skerritt, J.H., 1985, Anticonvulsant drug mechanisms of action, Fed. Proc. 44: 2634–2639.Google Scholar
  98. Maître, M., Ossola, L., and Mandel, P., 1976, In vitro studies into the effect of inhibition of rat brain succinic semialdehyde dehydrogenase on GABA synthesis and degradation, FEBS Lett. 72: 53–57.Google Scholar
  99. Mandel, P., Ciesielski, L., Maître, M., Simler, S., Mack, G., and Kempf, E. 1978, Involvement of central GABAergic systems in convulsions and aggressive behavior, in: GABA—Biochemistry and CNS Functions. Advances in Experimental Medicine and Biology, Vol. 123 (Mandel, P. and DeFeudis, F.V., eds.), Plenum Press, New York, London, pp. 475–492.Google Scholar
  100. Marcus, R.J., Winters, W.D., Mori, K., and Spooner, C.E., 1967, EEG and behavioural comparison of the effects of gamma-hydroxybutyrate, gamma-butyrolactone and short chain fatty acids in the rat, Int. J. Neuropharmacol. 6: 175–185.Google Scholar
  101. McLean, M.J., and Macdonald, R.L., 1983, Phenytoin and carbamazepine selectively limit sustained high frequency repetitive firing of cultured mouse neurons, Soc. Neurosci. Abstr. 9: 398.Google Scholar
  102. McLean, M.J., and Macdonald, R.L., 1984, Limitation of high-frequency repetitive firing of cultured mouse neurons: An in vitro assay of anticonvulsant drug action, Ann. Neurol. 16: 121.Google Scholar
  103. McLean, M.J., and Macdonald, R.L., 1986, Sodium valproate, but not ethosuximide, produces use-and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture, J. Pharmacol. Exp. Ther. 237: 1001–1011.Google Scholar
  104. Medical Letter, 1986, Drugs for epilepsy, Med. Lett. 28: 91–94.Google Scholar
  105. Medical Letter, 1989, Drugs for epilepsy, Med. Lett. 31: 1–4.Google Scholar
  106. Meldrum, B.S., 1975, Epilepsy and GABA-mediated inhibition, Int. Rev. Neurobiol. 17: 1–36.Google Scholar
  107. Meldrum, B.S., 1980, Mechanism of action of val proate. GABA neurotransmission, Brain Res. Bull. 5(Suppl. 2): 579–584.Google Scholar
  108. Mesdjian, E., Ciesielski, L., Valli, M., Bruguerolle, B., Jadot, G., Bouyard, P., and Mandel, P., 1982, Sodium valproate: Kinetic profile and effects on GABA levels in various brain areas of the rat, Prog. Neuro-Psychopharmacol. Biol. Psychiat. 6: 223–233.Google Scholar
  109. Meunier, H., Carraz, G., Meunier, Y., Eymard, P., and Aimard, M., 1963, Propriétés pharmacody-namiques de l’acide n-dipropylacétique. 1er mémoire: Propriétés antiépileptiques, Thérapie 18: 435–438.Google Scholar
  110. Minchin, M.C.W., and Beart, P.M., 1975, Compartmentation of amino acid metabolism in the rat dorsal root ganglion; A metabolic and autoradiographic study, Brain Res. 83: 437–449.Google Scholar
  111. Morre, M., Keane, P.E., Vernieres, J.C., Simiand, J., and Roncucci, R., 1984, Valproate: Recent findings and perspectives, Epilepsia 25(Suppl. 1): S5–S9.Google Scholar
  112. Nau, H., and Löscher, W., 1982, Valproic acid: Brain and plasma levels of the drug and its metabolites, anticonvulsant effects of γ-aminobutyric acid (GABA) metabolism in the mouse, J. Pharmacol. Exp. Ther. 220: 654–659.Google Scholar
  113. Nutt, J., William, A., Plotkin, C., Eng, N., Zeigler, M., and Calne, D.B., 1979, Treatment of Parkinson’s disease with sodium valproate: Clinical, pharmacological and biochemical observations, J. Can. Sci. Neurol. 6: 337–343.Google Scholar
  114. Ohdo, S., Nakano, S., and Ogawa, N., 1988, Chro-nopharmacological study of sodium valproate in mice: Dose-concentration-response relationship, Jpn. J. Pharmacol. 47: 11–19.Google Scholar
  115. Oyama, Y., Hori, N., Tokutomi, N., and Akaike, N., 1987, D-600 blocks open Ca2+ channels more profoundly than closed ones, Brain Res. 417: 143–147.Google Scholar
  116. Patsalos, P.N., and Lascelles, P.T., 1981, Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenylhydantoin, phe-nobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat, J. Neurochem. 36: 688–695.Google Scholar
  117. Penry, J.K.E., 1988, Valproate monotherapy in the treatment of epilepsy, Am. J. Med. 84 (Suppl. 1A):1–41.Google Scholar
  118. Perreault, P., Tancredi, V., and Avoli, M., 1989, Failure of the antiepileptic drug valproic acid to modify synaptic and non-synaptic responses of CA1 hippocampal pyramidal cells maintained ‘in vitro,’ Epilepsy Res. 3: 227–231.Google Scholar
  119. Perry, T.L., and Hansen, S., 1978, Biochemical effects in man and rat of three drugs which can increase brain GABA content, J. Neurochem. 30: 679–684.Google Scholar
  120. Phillips, N.I., and Fowler, L.J., 1982, The effects of sodium valproate on γ-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice, Biochem. Pharmacol 31: 2257–2261.Google Scholar
  121. Pinder, R.M., Brogden, R.N., Speight, T.M., and Avery, G.S., 1977, Sodium valproate: A review of its pharmacological properties and therapeutic efficacy in epilepsy, Drugs 13: 81–123.Google Scholar
  122. Preisendörfer, U., Zeise, M.L., and Klee, M.R., 1987, Valproate enhances inhibitory postsynaptic potentials in hippocampal neurons in vitro, Brain Res. 435: 213–219.Google Scholar
  123. Rapeport, W.G., Mendelow, A.D., French, G., MacPherson, P., Teasdale, E., Agnew, E., Thompson, G.G., and Brodie, M.J., 1983, Plasma protein-binding and CSF concentrations of valproic acid in man following acute oral dosing, Br. J. Clin. Pharmacol. 16: 365–369.Google Scholar
  124. Rose, G.M., Olpe, H.-R., and Haas, H.L., 1986, Testing of prototype antiepileptics in hippocampal slices, Naunyn-Schmiedeberg’s Arch. Pharmacol. 332: 89–92.Google Scholar
  125. Ross, S.M., and Craig, C.R., 1981, Studies on γ-aminobutyric acid transport in cobalt experimental epilepsy in the rat, J. Neurochem. 36: 1006–1011.Google Scholar
  126. Roth, R.H., and Giarman, N.J., 1970, Natural occurrence of γ-hydroxybutyrate in mammalian brain, Biochem. Pharmacol. 19: 1087–1093.Google Scholar
  127. Rowan, A.J., Binne, C.D., Warfield, C.A., Meinardi, H., and Meijer, J.W.A., 1979, The delayed effect of sodium valproate on the photoconvulsive response in man, Epilepsia 20: 61–68.Google Scholar
  128. Rumigny, J.F., Maître, M., Cash, C., and Mandel, P., 1980, Specific and non-specific succinic semialdehyde reductases from rat brain: Isolation and properties, FEBS Lett. 117: 111–116.Google Scholar
  129. Rumigny, J.F., Cash, C.D., Mandel, P., Vincendon, G., and Maître, M., 1981, Evidence that a specific succinic semialdehyde reductase is responsible for γ-hydroxybutyrate synthesis in brain tissue slices, FEBS Lett. 134: 96–98.Google Scholar
  130. Sarhan, S., and Seiler, N., 1979, Metabolic inhibitors and subcellular distribution of GABA, J. Neurosci. Res. 4: 399–421.Google Scholar
  131. Schauf, C.L., 1987, Bepridil and valproate retard Na+ reactivation in Myxicola, Eur. J. Pharmacol. 138: 89–93.Google Scholar
  132. Schechter, P.J., Tranier, Y., and Grove, J., 1978, Effect of n-dipropylacetate on amino acid concentrations in mouse brain brain: Correlations with anti-convulsant activity, J. Neurochem. 31: 1325–1327.Google Scholar
  133. Schmutz, M., Olpe, H.-R., and Koella, W.P., 1979, Central actions of valproate sodium, J. Pharm. Pharmacol. 31: 413–414.Google Scholar
  134. Simler, S., Ciesielski, L., Maître, M., Randrianisoa, H., and Mandel, P., 1973, Effects of sodium n-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level, Biochem. Pharmacol. 22: 1701–1708.Google Scholar
  135. Simler, S., Ciesielski, L., Klein, M., and Mandel, P., 1981, Sur le mécanisme d’action d’un anticonvulsant, le dipropylacétate de sodium, Cr. Soc. Biol. 175: 114–119.Google Scholar
  136. Simon, D., and Penry, J.K., 1975, Sodium di-n-propylacetate (DPA) in the treatment of epilepsy. A review, Epilepsia 16: 549–573.Google Scholar
  137. Slater, C.E., and Johnston, D., 1978, Sodium valproate increases potassium conductance in Aply-sia neurons, Epilepsia 19: 379–384.Google Scholar
  138. Snead, III, O.C., 1978, Gamma-hydroxybutyrate in the monkey. I: Electroencephalographic, behavioral, and parmacokinetic studies, Neurology 28: 636–642.Google Scholar
  139. Snead, III, O.C., Bearden, L.J., and Pegram, V., 1980, Effect of acute and chronic anticonvulsant administration on endogenous γ-hydroxybutyrate in rat brain, Neuropharmacology 19: 47–52.Google Scholar
  140. Snead, III, O.C., and Liu, C.-C., 1984, Gamma-hydroxybutyric acid binding sites in rat and human brain synaptosomal membranes, Biochem. Pharmacol. 33: 2587–2590.Google Scholar
  141. Squires, R.F., Casida, J.E., Richardson, M., and Saederup, E., 1983, [35S]t-Butylbicyclophos-phorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites, Molec. Pharmacol. 23: 326–336.Google Scholar
  142. Starmer, C.F., and Grant, A.O., 1985, Phasic ion channel blockade. A kinetic model and parameter estimation procedure, Molec. Pharmacol. 28: 348–356.Google Scholar
  143. Starmer, C.F., Packer, D.L., and Grant, A.O., 1987, Ligand binding to transiently accessible sites: mechanisms for varying apparent binding rates, J. Theor. Biol. 124: 335–341.Google Scholar
  144. Taberner, P.V., Charington, C.B., and Unwin, J.W., 1980, Effects of GAD and GABA-T inhibitors on GABA metabolism in vivo, Brain Res. Bull. 5(Suppl. 2): 621–625.Google Scholar
  145. Taylor, C.P., and Dudek, F.E., 1982, Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses, Science 218: 810–812.Google Scholar
  146. Ticku, M., and Davis, W.C., 1981, Effect of valproic acid on [3H]diazepam and [3H]dihydropicrotoxinin binding sites at the benzodiazepine-GABA receptor-ionophore complex, Brain Res. 223: 218–222.Google Scholar
  147. Troupin, A.S., Mendius, J.R., Cheng, F., and Risinger, M.W., 1986, MK-801, in: Current Problems in Epilepsy: New Anticonvulsant Drugs (Meldrum, B.S. and Porter, R.J., eds.), John Libbey, London, pp. 191–201.Google Scholar
  148. Turner, A.J., and Whittle, S.R., 1980, Sodium valproate, GABA and epilepsy, Trends Pharmacol. Sci. 1: 257–260.Google Scholar
  149. Vanden Bussche, G., De Beukelaar, F., and Wauquier, A., 1985, Calcium entry-blockade and epilepsy, in: Calcium Entry Blockers and Tissue Protection (Godfraind, T., Vanhoutte, P.M., Govoni, S. and Paoletti, R., eds.), Raven Press, New York, pp. 229–236.Google Scholar
  150. Van der Laan, J.W., de Boer, T., and Bruinvels, J., 1979, Di-n-propylacetate and GABA degradation preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase, J. Neurochem. 32: 1769–1780.Google Scholar
  151. VanDongen, A.M., VanErp, M.G., and Voskuyl, R.A., 1986, Valproate reduces excitability by blockage of sodium and potassium conductance, Epilepsia 27: 177–182.Google Scholar
  152. Vayer, P., Mandel, P., and Maître, M., 1985, Conversion of γ-hydroxybutyrate to γ-aminobutyrate in vitro, J. Neurochem. 45: 810–814.Google Scholar
  153. Vayer, P., Mandel, P., and Maître, M., 1987a, Minireview. Gamma-hydroxybutyrate, a possible neurotransmitter, Life Sci. 41: 1547–1557.Google Scholar
  154. Vayer, P., Charlier, B., Mandel P., and Maître, M., 1987b, Effect of anticonvulsant drugs on γ-hy-droxybutyrate release from hippocampal slices: Inhibition by valproate and ethosuximide, J. Neurochem. 49: 1022–1024.Google Scholar
  155. Vayer, P., Cash, C.D., and Maître, M., 1988, Is the anticonvulsant mechanism of valproate linked to its interaction with the cerebral γ-hydroxybutyrate system? Trends Pharmacol. Sci. 9: 127–129.Google Scholar
  156. Whittle, S.R., and Turner, A.J., 1978, Effects of the anticonvulsant sodium valproate on γ-amino-butyrate and aldehyde metabolism in ox brain, J. Neurochem. 31: 1453–1459.Google Scholar
  157. Whittle, S.R., and Turner, A.J., 1982, Effects of anticonvulsants on the formation of γ-hydroxybutyrate from γ-aminobutyrate in rat brain, J. Neurochem. 38: 848–851.Google Scholar
  158. Willow, M., and Catterall, W.A., 1982, Inhibition of binding of [3H]batrachotoxinin A 20-β-benzoate to sodium channels by the anticonvulsant drugs diphenylhydantoin and carbamazepine, Mol. Pharmacol. 22: 627–635.Google Scholar
  159. Winters, W.D., and Spooner, C.H., 1965, Various seizure activities following γ-hydroxybutyrate, Int. J. Neuropharmacol. 4: 197–200.Google Scholar
  160. Wong, E.H.F., Kemp, J.A., Priestley, T., Knight, A.R., Woodruff, G.N., and Iversen, L.L., 1986, The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist, Proc. Natl. Acad. Sci. USA 83: 7104–7108.Google Scholar
  161. Wood, J.D., Kurylo, E., and Tsui, S.-K., 1981, Interactions of di-n-propylacetate, gabaculine, and aminooxyacetic acid: Anticonvulsant activity and the γ-aminobutyrate system, J. Neurochem. 37: 1440–1447.Google Scholar
  162. Zimmer, R., Teelken, A.W., Gündürewa, M., Rüther, E., and Cramer, H., 1980, Effect of sodium-valproate on CSF GABA, cAMP, cGMP and homovanillic acid levels in man, Brain Res. Bull. 5(Suppl. 2): 585–588.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • R. Čapek
  • B. Esplin

There are no affiliations available

Personalised recommendations