Postictal Compensatory Changes in Cortical Alpha-1 Receptors and Adrenergic-Mediated Phosphoinositol Metabolism Following Repeated Electroconvulsive Seizures in Rats

  • A. L. Sherwin
  • S. Dyve
  • F. Dubeau
  • W. Regenold
  • D. Guévremont


The extensive network of noradrenergic fibers originating mainly from the locus coeruleus (LC) innervates most parts of the forebrain, including the thalamus, the hippocampus, and the entire cerebral cortex. This system constitutes a route that can influence the activity of many levels of the neuraxis, particularly the neocortex (Foote et al., 1983; Segal, 1985). Norepinephrine (NE) is a slow-signaling chemical messenger that acts at various synapses by altering postsynaptic responsiveness to other neurotransmitters (Woodward et al., 1979). In the neocortex, NE appears to play a predominantly inhibitory role in modulating cortical neuronal excitability, enhancing and prolonging the efficacy of GABA (Reader et al., 1979; for a review, see Reader and Jasper, 1984).


Locus Coeruleus Seizure Threshold Electroconvulsive Shock Dorsal Bundle Electroconvulsive Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, R.P., 1948, A study of the adrenotropic receptors, Am. J. Physiol. 153: 586–600.Google Scholar
  2. Audet, M.A., Doucet, G., Oleskevich, S., and Descarries, L., 1988, Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex, J. Comp. Neurol. 274: 307–318.CrossRefGoogle Scholar
  3. Barsa, J.A., and Kline, N.S., 1955, Treatment of two hundred disturbed psychotics with reserpine, JAMA 158: 110–113.CrossRefGoogle Scholar
  4. Bazan, N.G., Birkle, D.L., Tang, W., and Reddy, T.S., 1986, The accumulation of the free arachi-donic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy, Adv. Neurol. 44: 879–902.Google Scholar
  5. Beaudet, A., and Descarries, L., 1984, Fine structure of monoamine axon terminals in cerebral cortex, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T.A. Reader, and H.H. Jasper, eds.), Alan R. Liss, New York, pp. 77–93.Google Scholar
  6. Bergstrom, D.A., and Kellar, K.J., 1979, Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain, Nature 278: 464–466.CrossRefGoogle Scholar
  7. Berridge, M.J., Downes, C.P., and Hanley, M.R., 1982, Lithium amplifies agonist-dependent phos-phatidylinositol responses in brain and salivary glands, Biochem. J. 206: 587–595.Google Scholar
  8. Blendy, J.A., Rossiter, C.D., and Kellar, K.J., 1987, Effects of electroconvulsive shock on [3H] prazosin and [3H] WB-4101 binding to alpha-1 adrenergic receptors in rat cerebral cortex, Soc. Neurosci. Abstr. 13: 1342.Google Scholar
  9. Bregman, B., Dedek, J., Nassif, S., Trottier, S., and Chauvel, P., 1983, Noradrenergic mechanisms control propagation of chronic cobalt activities in the rat, in: Current Problems in Epilepsy, Vol. 1: Cerebral Blood Flow, Metabolism and Epilepsy (M. Baldy-Moulinier, D.H. Ingvar, and B.S. Meldrum, eds.), Libbey, London, pp. 351–356.Google Scholar
  10. Brière, R., Sherwin, A.L., Robitaille, Y., Olivier, A., Quesney, L.F., and Reader, T.A., 1986, Alpha-1 adrenoceptors are decreased in human epileptic foci, Ann. Neurol. 19: 26–30.CrossRefGoogle Scholar
  11. Chauvel, P., and Trottier, S., 1986, Role of noradrenergic ascending system in extinction of epileptic phenomena, in: Basic Mechanisms of the Epilepsies—Molecular and Cellular Approaches (A.V. Delgado-Escueta, A.A. Ward Jr., D.M. Woodbury, and R.J. Porter, eds.), Raven Press, New York, pp. 475–487.Google Scholar
  12. Corcoran, M.E., 1988, Characteristics of accelerated kindling after depletion of noradrenaline in adult rat, Neuropharmacol. 27: 1081–1084.CrossRefGoogle Scholar
  13. Cox, B., and Lomax, P., 1976, Brain amines and spontaneous epileptic seizures in the mongolian gerbil, Pharmacol. Biochem. Behav. 4: 263–267.CrossRefGoogle Scholar
  14. Dailey, J.W., Reigel, C.E., Mishra, P.K., and Jobe, P.C., 1989, Neurobiology of seizure predisposition in the genetically epilepsy-prone rat, Epilepsy Res. 3: 3–17.CrossRefGoogle Scholar
  15. Descarries, L., Watkins, K.C., and Lapierre, Y., 1977, Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis, Brain Res. 133: 197–222.CrossRefGoogle Scholar
  16. Diop, L., Brière, R., Grondin, L., and Reader, T.A., 1987, Adrenergic receptor and catecholamine distribution in rat cerebral cortex: Binding studies with [3H]prazosin, [3H]idazoxan and [3H]dihydroalprenolol, Brain Res. 402: 403–408.CrossRefGoogle Scholar
  17. Dubeau, F., and Sherwin, A., 1989, Adrenergic mediated phosphatidylinositol metabolism is modulated by epileptic discharges in human neocortex, Brain Res. 481: 200–203.CrossRefGoogle Scholar
  18. Dubeau, F., and Sherwin, A.L., 1989, Effect of repeated versus single electro-convulsive seizures on adrenergic-mediated phosphoinositol hydrolysis in rat neocortex, Exp. Neurol. 105: 206–210.CrossRefGoogle Scholar
  19. Dyve, S., Gjedde, A., Diksic, M., Sherwin A., and Hakim, A., 1989, In vivo quantification of blood-brain transfer and binding of [125I]HEAT, an alpha-1 adrenoceptor antagonist, Synapse 3: 205–212.CrossRefGoogle Scholar
  20. Feinstein, B., Gleason, C.A., and Libet, B., 1989, Stimulation of locus coeruleus in man, Stereos-tatic Fund. Neurosurg., 52: 26–41.CrossRefGoogle Scholar
  21. Ferrendeli, J. A., 1984, Roles of biogenic amines and cyclic nucleotides in seizure mechanisms, Ann. Neurol. 16 (Suppl.):S98–S103.CrossRefGoogle Scholar
  22. Fisher, S.K., and Agranoff, B.W., 1987, Receptor activation and inositol lipid hydrolysis in neural tissues, J. Neurochem. 48: 999.CrossRefGoogle Scholar
  23. Foote, S.L., Bloom, F.E., and Aston-Jones, G., 1983, Nucleus locus coeruleus: New evidence of anatomical and physiological specificity, Physiol. Rev. 63: 844–914.Google Scholar
  24. Gjedde, A., Wong, D.F., and Wagner, H.N. Jr., 1986, Transient analysis of irreversible and reversible tracer binding in human brain in vivo, in: PET and NMR: New Perspectives in Neuroi-maging and in Clinical Neurochemistry (L. Battistin, and F. Gerstenbrand, eds.), Alan R. Liss, New York, pp. 223–235.Google Scholar
  25. Gonzales, R.A., Crews, F.T., Summers, C., and Raizada, M.K., 1987, Norepinephrine regulation of alpha-1 receptors and alpha-1 stimulated phos-phoinositide hydrolysis in primary neuronal cultures, J. Pharmacol. Exp. Ther. 242: 764–761.Google Scholar
  26. Graillot, C., Baumann, N., and Maurin, Y., 1985, Modulation of alpha-1 and alpha-2 adrenoceptor binding sites in the brain of audiogenic seizure susceptible mice (DBA/2J), Eur. J. Pharmacol. 118: 231–237.CrossRefGoogle Scholar
  27. Green, R.A., 1986, Changes in γ-aminobutyric acid biochemistry and seizure threshold, in: Electroconvulsive Therapy, Vol. 462 (S. Malitz and H.A. Sackeim, eds.), New York Academy of Sciences, New York, pp. 105–119.Google Scholar
  28. Grimm, L.J., Perry, D.C., Blendy, J. A., Stockmeier, C.A., and Kellar, K.J., 1987, Electroconvulsive shock increases alpha-1 adrenergic receptor binding in rat cortex and amygdala, but not in other brain regions, Proc 17 Ann Meeting Soc for Neuroscience (13) Part 2, Abstr. 371. 2: 1341.Google Scholar
  29. Hendley, E.D., and Welch, B., 1975, Electroconvulsive shock: Sustained decrease in norepinephrine uptake affinity in a reserpine model of depression, Life Sci. 16: 45–54.CrossRefGoogle Scholar
  30. Hirasawa, K., and Nishizuka, Y., 1985, Phosphatidylinositol turnover in receptor mechanism and signal transduction, Ann. Rev. Pharmacol. Toxicol. 25: 147–170.CrossRefGoogle Scholar
  31. Hokin, L.E., 1985, Receptors and phospho-inositide-generated second messengers, Ann. Rev. Biochem. 54: 205–235.CrossRefGoogle Scholar
  32. Jasper, H.H., Reader, T.A., Avoli, M., Dykes, R.W., and Gloor, P., 1988, Molecular controls and communication in cerebral cortex, in: Neurotransmitters and Cortical Function (M. Avoli, T.A. Reader, R.W. Dykes, and P. Gloor, eds.), Plenum Press, New York, pp. 593–605.CrossRefGoogle Scholar
  33. Jobe, P.C., and Laird III, H.E. (eds.), 1987, Neurotransmitters and Epilepsy. Humana Press, Clifton, NJ, pp. 376.Google Scholar
  34. Johnson, R.D., and Minneman, K.P., 1985, Alpha-1-adrenergic receptors and stimulation of [3H] inositol metabolism in rat brain: Regional distribution and parallel inactivation, Brain Res. 341: 7–15.CrossRefGoogle Scholar
  35. Jones, B.E., and Moore, R.Y., 1977, Pending projections of the locus coeruleus in the rat. Autoradiographic study, Brain Res. 127: 23–53.CrossRefGoogle Scholar
  36. Jones, L.S., Gauger, L.L., and Davis, J.N., 1985, Anatomy of brain alpha-1 adrenergic receptors: In vitro autoradiography with [125I]HEAT, J. Comp. Neurol. 231: 190–208.CrossRefGoogle Scholar
  37. Kendall, D.A., Brown, E., and Nahorski, S.R., 1985, Alpha-1-adrenoceptor mediated inositol phospholipid hydrolysis in rat cerebral cortex: Relationship between receptor occupancy and response and effects of denervation, Eur. J. Pharmacol. 114: 41–52.CrossRefGoogle Scholar
  38. Kety, S.S., Javoy, F., Thierry, A.M., Julou, L., and Glowinski, J., 1967, A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of rat, Proc. Natl. Acad. Sci. USA 58: 1249–1254.CrossRefGoogle Scholar
  39. Ko, H.K., Dailey, J.W., and Jobe, P.C., 1982, Effect of increments in norepinephrine concentrations on seizure intensity in the genetically epilepsy-prone rat, J. Pharmacol. Ther. 22: 662–669.Google Scholar
  40. Levitzky, A., 1988, From epinephrine to cyclic AMP, Science 241: 800–805.CrossRefGoogle Scholar
  41. Libet, B., Gleason, C.A., Wright, E.W. Jr., and Feinstein, B., 1977, Suppression of an epileptiform type of electrocortical activity in the rat by stimulation in the vicinity of locus coeruleus, Epilepsia 18: 451–462.CrossRefGoogle Scholar
  42. Löscher, W., and Czuczwar, S.J., 1987, Comparison of drugs with different selectivity for central alpha-1 and alpha-2 adrenoceptors in animal models of epilepsy, Epilepsy Res. 1: 165–172.CrossRefGoogle Scholar
  43. Loughlin, S.E., and Fallon, J.H., 1985, Locus coeruleus, in: The Rat Nervous System, Vol. 2 Hind-brain and Spinal Cord (G. Paxinos, ed.), Academic Press, North Ryole, New South Wales, Australia, pp. 79–93.Google Scholar
  44. Masserano, J.M., Takimoto, G.S., and Weiner, N., 1981, Electroconvulsive shock increases tyrosine hydroxylase activity in the brain and adrenal gland of the rat, Science 214: 662–665.CrossRefGoogle Scholar
  45. Maynert, E.W., Marczynski, T.J., and Browning, R.A., 1975, The role of the neurotransmitters in the epilepsies, in: Advances in Neurology, Vol. 13: Current Reviews (W.J. Friedlander, ed.), Raven Press, New York, pp. 79–147.Google Scholar
  46. Minchin, M.C., Williams, J., Bowdler, J.M., and Green, A.R., 1983, Effect of electroconvulsive shock on the uptake and release of noradrenaline and 5-hydroxytryptamine in rat brain slices, J. Neurochem. 40: 765–768.CrossRefGoogle Scholar
  47. Minneman, K.P. and Abel, P.W., 1987, Relationship of alpha-1 adrenergic receptor occupancy to tissue response, in: The Alpha-1 Adrenergic Receptors (R.R. Ruffolo, ed.), Humana Press, Clifton, NJ, pp. 267–324.CrossRefGoogle Scholar
  48. Mobley, P., and Greengard, P., 1985, Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex, Proc. Natl. Acad. Sci. USA 82: 945–947.CrossRefGoogle Scholar
  49. Modigh, K., 1976, Long-term effects of electroconvulsive shock therapy on synthesis turnover and uptake of brain monoamines, Psychopharmacol-ogy 49: 179–185.CrossRefGoogle Scholar
  50. Moore, R.Y., and Bloom, F.E., 1979, Central catecholamine neuron systems: Anatomy and physiology of norepinephrine and epinephrine systems, Ann. Rev. Neuro sci. 2: 113–168.CrossRefGoogle Scholar
  51. Morrison, J.H., Molliver, M.E., Grzanna, R., and Coyle, J.T., 1981, The intracortical trajectory of the coeruleo-cortical projection in the rat. A tan-gentially organized cortical afferent, Neuro-science 6: 139–158.Google Scholar
  52. Morrow, A.L., and Creese, I., 1986, Characterization of alpha-1 adrenergic receptor subtypes in rat brain: A re-evaluation of [3H] WB4101 and [3H] prazosin binding, Mol. Pharmacol. 29: 321–330.Google Scholar
  53. Neuman, R.S., 1986, Suppression of penicillin-induced focal epileptiform activity by locus coeruleus stimulation: Mediation by an alpha-1 adrenoceptor, Epilepsia 27: 359–366.CrossRefGoogle Scholar
  54. Nicoletti, F., Iadarola, M.J., Wroblewski, J.T., and Costa, E., 1986, Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with alpha-1 adrenoceptors, Proc. Natl. Acad. Sci. USA 83: 1931–1935.CrossRefGoogle Scholar
  55. Nutt, D.J., Cowen, P.J., and Green, A.R., 1981, Studies on the postictal rise in seizure threshold, Eur. J. Pharmacol. 71: 287–295.CrossRefGoogle Scholar
  56. Post, R.M., Putman, F., Udhe, T.W., and Weiss, S.R., 1986, Electroconvulsive therapy as an anticonvulsant: Implications for its mechanisms of action in affective illness, Ann. NY Acad. Sci. 462: 376–388.CrossRefGoogle Scholar
  57. Prockop, O.J., Shore, P.A., and Brodie, B.B., 1959, An anticonvulsant effect of monoamine oxidase inhibitors, Experientia 15: 145–147.CrossRefGoogle Scholar
  58. Reader, T.A., 1983, The role of catecholamines in neuronal excitability, in: Neurology and Neurobiology, Vol. 2: Basic Mechanisms of Neuronal Hyperexcitability (H. Jasper, and N. Van Gelder, eds.), Alan R. Liss, New York, pp. 281–321.Google Scholar
  59. Reader, T.A., and Brière, R., 1983, Long-term unilateral noradrenergic denervation: Monoamine content and [3H]Prazosin binding sites in rat neocortex, Brain Res. Bull. 11: 687–692.CrossRefGoogle Scholar
  60. Reader, T.A., and Jasper, H.H., 1984, Interactions between monoamines and other transmitters in cerebral cortex in: Neurology and Neurobiology Vol. 10: Monoamine innervation of cerebral cortex (L. Descarries, T.A. Reader, and H.H. Jasper, eds.), Alan R. Liss, New York, pp. 195–225.Google Scholar
  61. Reader, T.A., Ferron, A., Descarries, L., and Jasper, H.H., 1979, Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies, Brain Res. 160: 217–229.CrossRefGoogle Scholar
  62. Reddy, T.S., and Bazan, N.G., 1987, Arachidonic acid, stearic acid, and diacylglycerol accumulation correlates with the loss of phosphatidyli-nositol 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock: Complete revision of changes 5 minutes after stimulation, J. Neuro-sci Res. 18: 449–455.CrossRefGoogle Scholar
  63. Ribak, C.E., Roberts, R.C., Byun, M.Y., and Kim, H.L., 1988, Anatomical and behavioral analyses of the inheritance of audiogenic seizures in the progeny of genetically epilepsy-prone and Sprague-Dawley rats, Epilepsy Res. 2: 345–355.CrossRefGoogle Scholar
  64. Rogawski, M.A., 1985, Norepinephrine, in: Neurotransmitter Actions in the Vertebrate Nervous System (M.A. Rogawski and J.L. Barker, eds.), Plenum Press, New York, pp. 241–284.Google Scholar
  65. Rosenbaum, J. S. Azhar, S., and Hoffman, B.B., 1987, Alpha-1 adrenergic receptor mediated polyphosphoinositide breakdown in DDT-l-MF-2 cells, Biochem. Pharmacol. 36: 4335–4340.CrossRefGoogle Scholar
  66. Schildkraut, J.J., Shanberg, S.M., Breese, G.R., and Kopin, I.J., 1967, Norepinephrine metabolism and drugs used in affective disorders: A possible mechanism of action, Am. J. Psychiatry 124: 54–62.Google Scholar
  67. Segal, M., 1985, Mechanisms of action of noradrenaline in the brain, Physiol. Psychol. 13: 172.Google Scholar
  68. Sherwin, A.L., 1988, Guide to neurochemical analysis of surgical specimens of human brain, Epilepsy Res. 2: 281–288.CrossRefGoogle Scholar
  69. Sherwin, A., Robitaille, Y., Quesney, L., Reader, T., Olivier, A., Brière, R., Andermann, E., Feindel, W., Eblanc, R., Matthew, E., Ochs, R., Villemure, J., and Gloor, P., 1987, Noradrenergic abnormalities in human cortical seizure foci, in: Fundamental Mechanisms of Human Brain Function (J. Engel Jr., ed.), Raven Press, New York, pp. 249–258.Google Scholar
  70. Sherwin, A., DeRoode, M., Dubeau, F., Guév-remont, D., and Mills, N., 1989, Transient changes in cortical alpha-1 adrenoceptors and seizure threshold following electroconvulsive seizures in rats, Epilepsy Res. 3: 49–54.CrossRefGoogle Scholar
  71. Sibley, D.R., and Lefkowitz, R.J., 1985, Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as model, Nature 317: 124–129.CrossRefGoogle Scholar
  72. Stockmeier, C.A., McLeskey, S.W., Blendy, J.A., Armstrong, N.R., and Kellar, K.J., 1987, Electroconvulsive shock but not antidepressant drugs increase alpha-1 adrenoceptor binding sites in rat brain, Eur. J. Pharmacol. 139: 259–266.CrossRefGoogle Scholar
  73. Trottier, S., Lindvall, O., Chauvel, P., and Bjorklund, A., 1988, Facilitation of cobalt-induced epilepsy after lesions of the noradrenergic locus co-eruleus system, Brain Res. 454: 308–314.CrossRefGoogle Scholar
  74. Vetulani, J., Antkiewicz-Michaluk, L., Rokosz-Pelc, A., and Pilc, A., 1983, Chronic electroconvulsive treatment enhances the density of [3H] prazosin binding sites in the central nervous system of rat, Brain Res. 275: 392–395.CrossRefGoogle Scholar
  75. Wada, J.A. (ed.), 1986, Kindling 3, Raven Press, New York.Google Scholar
  76. Waterhouse, B.D., Moises, H.C., and Woodward, D.J., 1981, Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine, Neuropharmacology 20: 907–920.CrossRefGoogle Scholar
  77. Woodward, D.J., Moises, H.C., Waterhouse, B.D., Hoffer, B.J., and Freedman, R., 1979, Modulatory actions of norepinephrine in the central nervous system, Fed. Proc. 38: 2109–2116.Google Scholar
  78. Worley, P.F., Baraban, J.M., and Snyder, S.H., 1987, Beyond receptors: Multiple second messenger systems in brain, Ann. Neurol. 21: 217–219.CrossRefGoogle Scholar
  79. Yamaguchi, S., and Rogawski, M.A., 1987, Spike firing of single locus coeruleus neurons during experimental epileptic seizures in rat, Soc. Neu-rosci. Ahstr. 13: 1630.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • A. L. Sherwin
  • S. Dyve
  • F. Dubeau
  • W. Regenold
  • D. Guévremont

There are no affiliations available

Personalised recommendations