Mesencephalic Structures and Tonic—Clonic Generalized Seizures

  • F. Velasco
  • M. Velasco


A role for the brain stem in the initiation of convulsive disorders has been suspected for a long time. Clinical observations made evident that tonic-clonic generalized seizures (TCGS) resembled the picture induced by lesions in the upper brain stem (Van der Kolk, quoted by Muskins, 1928) and experiments performed in the past century revealed that mechanical or electrical stimulation of the brain stem produced convulsions (for a historical review, see Temkin, 1971, and Fromm, 1987). After the experiments of Fritsch and Hitzig (1870) that produced generalized seizures by electrical stimulation of the cerebral cortex in dogs, the cerebral cortex was taken as the place of origin of the epileptic attacks. For the past hundred years, evidence of cortical versus subcortical initiation of convulsive seizures has been presented, and although there has been more clinical and experimental evidence that favors a cortical origin for the majority of the epilepsies, a renewed interest in the possible brainstem origin of some types of epilepsy, particularly the TCGS, has arisen from numerous recent experimental observations.


Brain Stem Reticular Formation Convulsive Seizure Spinal Cord Transection Convulsive Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmone-Marsan, C., and Marossero, F., 1950, Electrocorticographic and electrocardiographic study of the convulsions induced by cardiazol, Electroencephalogr. Clin. Neurophysiol. 2: 133–142.CrossRefGoogle Scholar
  2. Babb, T.L., Mitchell, A.G., and Crandall, P.H., 1974, Fastigio-bulbar and dentate thalamic influences on hippocampal cobalt epilepsy in the cat, Electroencephalogr. Clin. Neurophysiol. 36: 141–154.CrossRefGoogle Scholar
  3. Barker, J.L., MacDonald, J.F., Mathers, D.A., McBurney, R.N., and Study, R.E., 1981, Convul-sant and anticonvulsant pharmacology of cultured mouse spinal neurons, in: Neurotransmitters, Seizures and Epilepsy, P.L. Morselli, K.G. Lloyd, W. Löschner, B. Meldrum, and E.H. Reynolds (eds.), Raven Press, New York, pp. 49–61.Google Scholar
  4. Batini, C., Moruzzi, G., Palestini, M., Rossi, G., and Zanchetti, A., 1959, Effects of complete pontine transection on the sleep wakefulness rhythm: The midpontine pretrigeminal preparation, Arch. Ital.Biol. 97: 1–12.Google Scholar
  5. Batuev, A.S., Alexandröv, A.A., and Scheinikov, N.A., 1982, Picrotoxin action on the receptive fields of the cat sensory motor cortex neurons, J. Neurosci. Res. 7: 49–55.CrossRefGoogle Scholar
  6. Bergmann, F., Costin, A., and Gutman, J., 1963, A low threshold convulsive area in the rabbit mesencephalon, Electroencephalogr. Clin. Neurophysiol. 15: 683–690.CrossRefGoogle Scholar
  7. Berman, A.L., 1958, The Brain Stem of the Cat, University of Wisconsin Press, Madison, WI, 195 p.Google Scholar
  8. Bremer, F., 1935, “Cerveau isolé” et physiologie du sommeil, C.R. Soc. Biol. (Paris) 118: 1235–1241.Google Scholar
  9. Bremer, F., 1936, Nouvelle recherches dans le mécanisme du sommeil, C.R. Soc. Biol. (Paris) 122: 460–464.Google Scholar
  10. Bizzi, E., and Spencer, W.A., 1962, Enhancement of EEG synchrony in the acute “cerveau isole,” Arch. Ital. Biol. 100: 234–247.Google Scholar
  11. Brodai, A., 1974, Neurological Anatomy, 2nd ed. Oxford University Press, London/New York, Ch. 4.Google Scholar
  12. Browning, R.A., 1985, Role of the brain stem reticular formation in tonic clonic seizures. Lesions and pharmacological studies, Fed. Proc. 44: 2425–2431.Google Scholar
  13. Browning, R.A., and Nelson, D.K., 1986, Modification of electroshock and pentylenetetrazol seizure patterns in rat following precolliculuar transections, Exp. Neurol. 93: 546–556.CrossRefGoogle Scholar
  14. Browning, A.R., Turner, J.F., Simonton, R.L., and Bundman, M.C., 1981a, Effect of midbrain and pontine tegmental lesions on the maximal electro-shock seizure pattern in rats, Epilepsia 22: 583–594.CrossRefGoogle Scholar
  15. Browning, R.A., Simonton, R.L., and Turner, F.J., 1981b, Antagonism of experimentally induced tonic seizures following lesions of the midbrain tegmentum, Epilepsia 22: 595–601.CrossRefGoogle Scholar
  16. Browning, R.A., Nelson, D., Mogharreban, N., Jobe, P., and Laird, H., 1985, Effect of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy prone rats, Epilepsia 26: 175–183.CrossRefGoogle Scholar
  17. Burnham, W.M., 1987, Electrical stimulation studies: Generalized convulsions triggered from the brain stem, in: Epilepsy and the Reticular Formation. The Role of the Reticular Core in Convulsive Seizures, G.H. Fromm, C.L. Faingold, R.A. Browning, and W.M. Burnham (eds.), Alan R. Liss, New York, pp. 25–38.Google Scholar
  18. Burnham, W.M., and Browning, R.A., 1987, The “reticular core” and generalized convulsions. A unifyed hypothesis, in: Epilepsy and the Reticular Formation. The Role of the Reticular Core in Convulsive Seizures, G.H. Fromm, C.L. Faingold, R.A. Browning, and W.M. Burnham (eds.), Alan R. Liss, New York, pp. 193–201.Google Scholar
  19. Burnham, W.M., Albright, P., Schneiderman, J., Ciu, P., and Ninchoji, T., 1981, Centrencephalic mechanisms in the kindling model, in J.A. Wada (ed.), Kindling Two, New York, Raven Press, pp. 161–178.Google Scholar
  20. Cesa-Bianchi, M.G., Mancia, M., and Mutani, R., 1967, Experimental epilepsy induced by cobalt powder in lower brain stem and thalamic structures. Electroencephalogr. Clin. Neurophysiol. 22: 525–529.CrossRefGoogle Scholar
  21. Dow, R.S., 1965, Extrinsic regulatory mechanisms of seizure activity. Epilepsia 6: 122–140.CrossRefGoogle Scholar
  22. Esplin, D.W., and Zablocka-Esplin, B., 1969, Mechanism of action of convulsants, in: H.H. Jasper, A.A. Ward, and A. Pope (eds.) Basic Mechanisms of the Epilepsies, Little Brown, Boston, pp. 167–183.Google Scholar
  23. Faingold, C.L., 1978, Brain stem reticular formation mechanisms subserving generalized seizures: Effects of convulsants and anticonvulsants on sensory evoked responses, Progr. Neuro-psychopharmacol. 2: 501–422.CrossRefGoogle Scholar
  24. Faingold, C.L., and Caspary, D.M., 1987, Effect of convulsant drugs on the brain stem, in G.H. Fromm, C.L. Faingold, R.A. Browning, and W.M. Burnham (eds.), Epilepsy and the Reticular Formation. The Role of the Reticular Core in Convulsive Seizures, Alan R. Liss, New York, pp. 39–80.Google Scholar
  25. Faingold, C.L., and Stittsworth, J.D., 1977, Alteration of single unit response to visual stimuli in the reticular formation and lateral geniculate body by pentylenetetrazol, Neuros ci. Abstr. 3: 139.Google Scholar
  26. Fernández Guardiola, A., and Ayala, F., 1971, Red nucleus fast activity and signs of paradoxical sleep appearing during the extinction of experimental seizures, Electroencephalogr. Clin. Neurophysiol. 30: 547–555.CrossRefGoogle Scholar
  27. Fernández Guardiola, A., Contreras, C.M., Calvo, J.M., Ayala, F., Brailosvsky, S., Solis, H., and Salgado, A., 1972, Changes in spontaneous neuronal firing in cerebellum, red nucleus and raphe nuclear complex during convulsive activity, in I.S. Cooper, M.R. Klan, R.S. Snider (eds.) The Cerebellum: Epilepsy and Behavior, New York, Plenum Press, pp. 19–36.Google Scholar
  28. Freedman, D.A., and Ferris, G.S., 1956, Effect of mesencephalic lesions on metrazol induced cortical activity, Neurology 6: 173–178.Google Scholar
  29. Fritsch, G., and Hitzig, E., 1870, über die electri-sche Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37: 300–332.Google Scholar
  30. Fromm, G.H., 1987, The brain stem and convulsions. A historical review, in G.H. Fromm, C.L. Faingold, R.A. Browning, and W.M. Burnham (eds.) Epilepsy and the Reticular Formation: The Role of the Reticular Core in Convulsive Seizures Alan R. Liss, New York, pp. 1–8.Google Scholar
  31. Fromm, G.H., Terrence, C.F., and Chattha, A.S., 1984, Differential effect of antiepileptic and non-antiepileptic drugs on the reticular formation, Life Sci. 35: 2665–2673.CrossRefGoogle Scholar
  32. Garant, D.S., and Gale, K., 1983, Lesions of substantia nigra protect against experimentally induced seizures, Brain Res. 273: 156–161.CrossRefGoogle Scholar
  33. Gastaut, H., Naquet, R., and Fischer-Williams, M., 1958, The physiopathology of grand mal seizures generalized from the start, J. Nerv. Ment. Dis. 127: 21–33.CrossRefGoogle Scholar
  34. Gloor, P., 1979, Generalized epilepsy with spike and wave discharge, a reinterpretation of its elec-trographic and clinical manifestations, Epilepsia 20: 575–588.CrossRefGoogle Scholar
  35. Gloor, P., and Testa, G., 1974, Generalized penicillin epilepsy in the cat; effects of intracarotid and intervertebral pentylenetetrazol and amobarbital injections, Electroencephalogr. Clin. Neurophysiol. 35: 499–515.Google Scholar
  36. Harabaugh, R.E., and Wilson, D.H., 1982, Telen-cephalic theory of generalized epilepsy. Observations in split brain patients, Neurosurgery 10: 725–732.CrossRefGoogle Scholar
  37. Hayashi, T., 1953, The efferent pathway of epileptic seizures for the face following cortical stimulation differs from that for limbs, Jpn. J. Physiol. 3: 306–321.CrossRefGoogle Scholar
  38. Hutton, J.T., Frost, J.D., and Foster, J., 1972, The influence of the cerebellum in cat penicillin epilepsy, Epilepsia 13: 401–408.CrossRefGoogle Scholar
  39. Iadarola, M.J., and Gale, K., 1982, Substantia nigra site of anticonvulsant activity mediated by gamma-aminobutyric acid, Science 218: 1237–1240.CrossRefGoogle Scholar
  40. Jasper, H.H., 1969, Mechanisms of propagation. Extracellular studies, in H.H. Jasper, A.A. Ward, and A. Pope (eds.) Basic Mechanisms of the Epilepsies, Little Brown, Boston, pp. 421–438.Google Scholar
  41. Jinnai, D., Mogami, H., Mukawa, J., Iwata, Y., and Kobayashi, K., 1969, Effect of brain stem lesions on metrazol induced seizures in cats, Electroen-cephalogr. Clin. Neurophysiol. 27: 404–411.CrossRefGoogle Scholar
  42. Kesner, R.P., 1966, Subcortical mechanisms of audiogenic seizures, Exp. Neurol. 15: 192–205.CrossRefGoogle Scholar
  43. Kreindler, A., 1965, Arrest of epileptic attack, Progr. Brain Res. 19: 160–167.CrossRefGoogle Scholar
  44. Kreindler, A., Zuckermann, E., Steriade, M., and Chimion, J., 1958, Electroclinical features of convulsions induced by stimulation of brain stem, J. Neurophysiol. 21: 430–436.Google Scholar
  45. Lindsley, D.B., Schreiner, L.H., and Magoun, H.W., 1949, An electromyographic study of spasticity, J. Neurophysiol. 12: 197–205.Google Scholar
  46. Lucas, A.E., and Sterman, M.B., 1975, Effect of forebrain lesion on the polycyclic sleep-wake patterns in cat, Exp. Neurol. 46: 368–388.CrossRefGoogle Scholar
  47. Magistris, M.R., Mauradian, M.S., and Gloor, P., 1988, Generalized convulsions induced by pentylenetetrazol in the cat: Participation of forebrain stem and spinal cord, Epilepsia 29(4): 379–388.CrossRefGoogle Scholar
  48. Magoun, H.W., 1958, The Waking Brain, Charles C. Thomas, Springfield, IL, pp. 64–78.CrossRefGoogle Scholar
  49. Magoun, H.W., and Rhines, R., 1946, An inhibitory mechanisms in the bulbar reticular formation, J. Neurophysiol. 9: 165–171.Google Scholar
  50. Magoun, H.W., and Rhines, R., 1947, Spasticity. The Stretch Reflex and Extrapyramidal Systems, Charles C. Thomas. Springfield, IL, pp. VII–59.Google Scholar
  51. McNamara, J.D., Galloway, M.T., Regisbes, L.C., and Shin, C., 1984, Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410–2417.Google Scholar
  52. Muskins, L.J.J., 1928, Epilepsia: Comparative Pathogenesis, Symptoms, Treatment, Balliere Tindall and Cox: London, pp. 126.Google Scholar
  53. Myers, R.D., 1970, An improved push-pull cannula system for perfusing an isolated region of the brain, Physiol. Behau. 5: 243–246.CrossRefGoogle Scholar
  54. Nicoll, R.A., and Padjen, A., 1976, Pentylenetetrazol, an antagonist of GABA at primary afférents of the isolated frog spinal cord, Neuropharmacology 15: 69–71.CrossRefGoogle Scholar
  55. Ninchoji, T., Burnham, V.W., and Livingston, K.E., 1981, Effect of lesions on cortical generalized seizures in the kindled rat. Spinal transection, Exp. Neurol. 73: 642–650.CrossRefGoogle Scholar
  56. Nyberg-Hansen, R., 1965, Sites and mode of termination of reticulo-spinal fibers in the cat. An experimental study with silver impregnation, J. Comp. Neurol. 124: 71–100.CrossRefGoogle Scholar
  57. Pellmar, T.C., and Wilson, W.A., 1977, Synaptic mechanisms of pentylenetetrazol: Selectivity for chloride conductance, Science 197: 912–914.CrossRefGoogle Scholar
  58. Penfield, W., and Kristiansen, K., 1957, Epileptic seizure patterns. Charles C. Thomas, Springfield, IL, pp. 16–85.Google Scholar
  59. Pompeiano, O., and Hoshino, K., 1976, Central control of posture: Reciprocal discharges by two pontine neuronal groups leading to suppression of descerebrate rigidity, Brain Res. 116: 131–138.CrossRefGoogle Scholar
  60. Puizillout, J.J., Foutz, A.S., and Ternaux, J.P., 1974, Les stades de sommeil de la préparation “encéphale isolé”. II. Phases paradoxales. Leur déclenchement par la stimulation des afférences baroceptives, Electroencephalogr. Clin. Neurophysiol. 37: 577–588.CrossRefGoogle Scholar
  61. Raines, A., and Anderson, R.J., 1976, Effects of acute cerebellectomy on maximal electroshock seizures and anticonvulsant efficacy of diazepam in the rat, Epilepsia 17: 177–182.CrossRefGoogle Scholar
  62. Rodin, E.A., 1964, Some relationships of induced seizures patterns to clinical findings in epileptic patients, Epilepsia 5: 21–32.CrossRefGoogle Scholar
  63. Rodin, E.A., Onuma, T., Wasson, S., Forzak, J., and Rodin, M., 1971, Neurophysiological mechanisms involved in nonfocal grand mal seizures induced by metrazol and megemide, Electroencephalogr. Clin. Neurophysiol. 30: 62–72.CrossRefGoogle Scholar
  64. Skinner, J.E., and Lindsley, D.B., 1973, The nonspecific mediothalamic frontocortical system: Its influence on electrocortical activity and behavior, in: K.H. Pribram and A.R. Luria (eds.) Psycho-physiology of Frontal Lobes, Academic Press, New York, pp. 185–234.Google Scholar
  65. Sprague, J. M., and Chambers, W. W., 1954, Control of posture by reticular formation and cerebellum in intact anesthetized and unanesthetized and in the decerebrated cat, Am. J. Physiol. 176: 52–64.Google Scholar
  66. Steriade, M., 1969, Ascending control of motor cortex responsiveness, Electroencephalogr. Clin. Neurophysiol. 26: 25–40.CrossRefGoogle Scholar
  67. Stone, E.W., 1972, Systemic chemical convulsants and metabolic derangements, in D.P. Purpura, K.J. Penry, D.B. Tower, M.D. Woodbury, and R.D. Walter, (eds.), Experimental Models of Epilepsy, Raven Press, New York, pp. 407–432.Google Scholar
  68. Tanaka, K., and Mishima, D., 1953, The localization of the center dealing with the tonic extensor seizure of electroshock, Jpn. J. Pharmacol. 3: 6–9.CrossRefGoogle Scholar
  69. Temkin, O., 1971, The Falling Sickness. A History of Epilepsy from Greeks to the Beginning of Modern Neurology, 2nd ed., Johns Hopkins Press, Baltimore, pp. 467.Google Scholar
  70. Tuttle, W.W., and Elliot, W.H., 1969, Electro-graphic and behavioral study of convulsants in the cat, Anesthesiology 30: 42–64.CrossRefGoogle Scholar
  71. Velasco, F., Velasco, M., Estrada-Villaneuva, F., and Machado, J., 1975, Specific and nonspecific multiple unit activities during the onset of pentylenetetrazol seizures. I. Intact animals. Epilepsia 16: 207–214.CrossRefGoogle Scholar
  72. Velasco, F., Velasco, M., Maldonado, H., and Estrada-Villanueva, F., 1976, Specific and nonspecific multiple unit activities during the onset of pentylenetetrazol seizures. II. Acute lesions interrupting nonspecific system connections, Epilepsia 17: 461–475.CrossRefGoogle Scholar
  73. Velasco, F., Velasco, M., Maldonado, H., Romo, R., and Estrada-Villanueva, F., 1979, Specific and nonspecific multiple unit activities during the onset of pentylenetetrazol seizures. III. Animals with ablations of the cerebral cortex, Epilepsia 20: 635–642.CrossRefGoogle Scholar
  74. Velasco, F., Velasco, M., and Romo, R., 1980, Specific and nonspecific multiple unit activities during pentylenetetrazol seizures. I. Animals with “encephale isole,” Electroencephalogr. Clin. Neurophysiol. 49: 600–607.CrossRefGoogle Scholar
  75. Velasco, F., Velasco M., and Romo, R., 1981, Specific and nonspecific multiple unit activities during pentylenetetrazol seizures in animals with pretrigeminal brain stem transections, Exp. Neurol. 74: 1–10.CrossRefGoogle Scholar
  76. Velasco, F., Velasco M., and Romo, R., 1982, Specific and nonspecific multiple unit activities during pentylenetetrazol seizures in animals with mesencephalic transections, Electroencephalogr. Clin. Neurophysiol. 53: 289–297.CrossRefGoogle Scholar
  77. Velasco, F., Velasco M., and Romo, R., 1983, Push-pull perfusion of pentylenetetrazol in the brain stem of “encephale isole” cats, Electroencephalogr. Clin. Neurophysiol. 56: 521–527.CrossRefGoogle Scholar
  78. Velasco, F., Velasco M., Pacheco, T., and Márques, I., 1985, Comparative effects of topical perfusions of pentylenetetrazol in the mesencephalon and cerebral cortex of cats, Exp. Neurol. 87: 533–544.CrossRefGoogle Scholar
  79. Velasco, M., Velasco F., Romo, R., and Estrada-Villanueva, F., 1981, charbachol push-pull perfusion in the reticular formation effect on contiguous multiple unit activity and other sleep-walking parameters in cats, Exp. Neurol. 72: 318–331.CrossRefGoogle Scholar
  80. Villablanca, J., 1965, The electrocorticogram in the chronic cerveau isolè cat, Electroencephalogr. Clin. Neurophysiol. 19: 576–586.CrossRefGoogle Scholar
  81. Wada, J.A., and Sato, M., 1975, Effects of unilateral lesion in the midbrain reticular formation on kindled amygdaloid convulsions in cats, Epilepsia 16: 693–697.CrossRefGoogle Scholar
  82. Weber, D.S., and Buchwald, J.S., 1965, A technique for recording and integrating multiple unit activity simultaneously with EEG in chronic animals, Electroencephalogr. Clin. Neurophysiol. 19: 190–192.CrossRefGoogle Scholar
  83. Yarowski, P.J., and Carpenter, D.O., 1978, A comparison of similar ionic responses to α-aminobutyric acid and acetylcholine, J. Neurophysiol. 41: 531–541.Google Scholar
  84. Zernicki, B., 1974, Isolated cerebrum of the pretrigeminal cat, Arch. Ital. Biol. 112: 350–371.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • F. Velasco
  • M. Velasco

There are no affiliations available

Personalised recommendations